Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logical equivalence
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Concept in logic}} In [[logic]] and [[mathematics]], statements <math>p</math> and <math>q</math> are said to be '''logically equivalent''' if they have the same [[truth value]] in every [[model (logic)|model]].<ref>{{Cite book|title=Introduction to Mathematical Logic|url=https://archive.org/details/introductiontoma00mend|url-access=limited|last=Mendelson|first=Elliott|authorlink = Elliott Mendelson|year=1979|edition=2|pages=[https://archive.org/details/introductiontoma00mend/page/n63 56]|publisher=Van Nostrand |isbn=9780442253073}}</ref> The logical equivalence of <math>p</math> and <math>q</math> is sometimes expressed as <math>p \equiv q</math>, <math>p :: q</math>, <math>\textsf{E}pq</math>, or <math>p \iff q</math>, depending on the notation being used. However, these symbols are also used for [[material equivalence]], so proper interpretation would depend on the context. Logical equivalence is different from material equivalence, although the two concepts are intrinsically related. ==Logical equivalences== In logic, many common logical equivalences exist and are often listed as laws or properties. The following tables illustrate some of these. === General logical equivalences === {| class="wikitable" |- ! ''Equivalence'' !! ''Name'' |- | <math>p \wedge \top \equiv p</math><br /><math>p \vee \bot \equiv p</math> || Identity laws |- | <math>p \vee \top \equiv \top</math><br /><math>p \wedge \bot \equiv \bot</math> || Domination laws |- | <math>p \vee p \equiv p</math><br /><math>p \wedge p \equiv p</math> || Idempotent or tautology laws |- | <math>\neg (\neg p) \equiv p</math> || [[Double negation]] law |- | <math>p \vee q \equiv q \vee p</math><br /><math>p \wedge q \equiv q \wedge p</math> || [[Commutative law]]s |- | <math>(p \vee q) \vee r \equiv p \vee (q \vee r)</math><br /><math>(p \wedge q) \wedge r \equiv p \wedge (q \wedge r) </math>|| [[Associative law]]s |- | <math>p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)</math><br /><math>p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)</math> || [[Distributive law]]s |- | <math>\neg (p \wedge q) \equiv \neg p \vee \neg q</math><br /><math>\neg (p \vee q) \equiv \neg p \wedge \neg q</math> || [[De Morgan's laws]] |- | <math>p \vee (p \wedge q) \equiv p</math><br /><math>p \wedge (p \vee q) \equiv p</math> || [[Absorption law]]s |- | <math>p \vee \neg p \equiv \top</math><br /><math>p \wedge \neg p \equiv \bot</math> || Negation laws |} === Logical equivalences involving conditional statements === :#<math>p \rightarrow q \equiv \neg p \vee q</math> :#<math>p \rightarrow q \equiv \neg q \rightarrow \neg p</math> :#<math>p \vee q \equiv \neg p \rightarrow q</math> :#<math>p \wedge q \equiv \neg (p \rightarrow \neg q)</math> :#<math>\neg (p \rightarrow q) \equiv p \wedge \neg q</math> :#<math>(p \rightarrow q) \wedge (p \rightarrow r) \equiv p \rightarrow (q \wedge r)</math> :#<math>(p \rightarrow q) \vee (p \rightarrow r) \equiv p \rightarrow (q \vee r)</math> :#<math>(p \rightarrow r) \wedge (q \rightarrow r) \equiv (p \vee q) \rightarrow r</math> :#<math>(p \rightarrow r) \vee (q \rightarrow r) \equiv (p \wedge q) \rightarrow r</math> === Logical equivalences involving biconditionals === :#<math>p \leftrightarrow q \equiv (p \rightarrow q) \wedge (q \rightarrow p)</math> :#<math>p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q</math> :#<math>p \leftrightarrow q \equiv (p \wedge q) \vee (\neg p \wedge \neg q)</math> :#<math>\neg (p \leftrightarrow q) \equiv \neg p \leftrightarrow q</math> :#<math>\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q</math> :#<math>\neg (p \leftrightarrow q) \equiv p \oplus q</math> Where <math>\oplus</math> represents [[XOR]]. ==Examples== === In logic === The following statements are logically equivalent: #If Lisa is in [[Denmark]], then she is in [[Europe]] (a statement of the form <math>d \rightarrow e</math>). #If Lisa is not in Europe, then she is not in Denmark (a statement of the form <math>\neg e \rightarrow \neg d</math>). Syntactically, (1) and (2) are derivable from each other via the rules of [[contraposition]] and [[double negation]]. Semantically, (1) and (2) are true in exactly the same models (interpretations, valuations); namely, those in which either ''Lisa is in Denmark'' is false or ''Lisa is in Europe'' is true. (Note that in this example, [[classical logic]] is assumed. Some [[non-classical logic]]s do not deem (1) and (2) to be logically equivalent.) ==Relation to material equivalence== Logical equivalence is different from material equivalence. Formulas <math>p</math> and <math>q</math> are logically equivalent if and only if the statement of their material equivalence (<math>p \leftrightarrow q</math>) is a tautology.<ref>{{Cite book|title=Introduction to Logic|last1=Copi|first1=Irving|author1link = Irving Copi|last2=Cohen|first2=Carl|author2link = Carl Cohen (philosopher)|last3=McMahon|first3=Kenneth|publisher=Pearson|year=2014|edition=New International|pages=348}}</ref> The material equivalence of <math>p</math> and <math>q</math> (often written as <math>p \leftrightarrow q</math>) is itself another statement in the same [[formal system|object language]] as <math>p</math> and <math>q</math>. This statement expresses the idea "'<math>p</math> if and only if <math>q</math>'". In particular, the truth value of <math>p \leftrightarrow q</math> can change from one model to another. On the other hand, the claim that two formulas are logically equivalent is a statement in [[metalanguage]], which expresses a relationship between two statements <math>p</math> and <math>q</math>. The statements are logically equivalent if, in every model, they have the same truth value. ==See also== {{Portal|Philosophy|Psychology}} * [[Logical consequence|Entailment]] * [[Equisatisfiability]] * [[If and only if]] * [[Logical biconditional]] * [[Logical equality]] * [[Mathematical Operators (Unicode block)#Block|β‘]] the iff symbol (U+2261 ''IDENTICAL TO'') * [[Mathematical Operators (Unicode block)#Block|β·]] the ''a'' is to ''b'' '''as''' ''c'' is to ''d'' symbol (U+2237 ''PROPORTION'') * [[Arrows (Unicode_block)#Block|β]] the [[Blackboard bold|double struck]] biconditional (U+21D4 ''LEFT RIGHT DOUBLE ARROW'') * [[Arrow (symbol)#Arrows_in_Unicode|β]] the bidirectional arrow (U+2194 ''LEFT RIGHT ARROW'') == References == {{reflist}} {{Mathematical logic}} {{DEFAULTSORT:Logical Equivalence}} [[Category:Mathematical logic]] [[Category:Metalogic]] [[Category:Logical consequence]] [[Category:Equivalence (mathematics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Mathematical logic
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)