Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Loop algebra
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Type of Lie algebra of interest in physics}} {{distinguish|text=[[quasigroup]] with an [[identity element]], also called an algebraic loop}} In [[mathematics]], '''loop algebras''' are certain types of [[Lie algebra]]s, of particular interest in [[theoretical physics]]. ==Definition== For a Lie algebra <math>\mathfrak{g}</math> over a field <math>K</math>, if <math>K[t,t^{-1}]</math> is the space of [[Laurent polynomials]], then <math display=block>L\mathfrak{g} := \mathfrak{g}\otimes K[t,t^{-1}],</math> with the inherited bracket <math display=block>[X\otimes t^m, Y\otimes t^n] = [X,Y]\otimes t^{m+n}.</math> === Geometric definition === If <math>\mathfrak{g}</math> is a Lie algebra, the [[tensor product]] of <math>\mathfrak{g}</math> with {{math|''C''<sup>∞</sup>(''S''<sup>1</sup>)}}, the [[associative algebra|algebra]] of (complex) [[smooth function]]s over the [[n-sphere|circle]] [[manifold]] {{math|''S''<sup>1</sup>}} (equivalently, smooth complex-valued [[Periodic function|periodic functions]] of a given period), <math display=block>\mathfrak{g}\otimes C^\infty(S^1),</math> is an infinite-dimensional Lie algebra with the [[Lie bracket of vector fields|Lie bracket]] given by <math display=block>[g_1\otimes f_1,g_2 \otimes f_2]=[g_1,g_2]\otimes f_1 f_2.</math> Here {{math|''g''<sub>1</sub>}} and {{math|''g''<sub>2</sub>}} are elements of <math>\mathfrak{g}</math> and {{math|''f''<sub>1</sub>}} and {{math|''f''<sub>2</sub>}} are elements of {{math|''C''<sup>∞</sup>(''S''<sup>1</sup>)}}. This isn't precisely what would correspond to the [[direct product]] of infinitely many copies of <math>\mathfrak{g}</math>, one for each point in {{math|''S''<sup>1</sup>}}, because of the smoothness restriction. Instead, it can be thought of in terms of [[smooth map]] from {{math|''S''<sup>1</sup>}} to <math>\mathfrak{g}</math>; a smooth parametrized loop in <math>\mathfrak{g}</math>, in other words. This is why it is called the '''loop algebra'''. == Gradation == Defining <math>\mathfrak{g}_i</math> to be the [[linear subspace]] <math>\mathfrak{g}_i = \mathfrak{g}\otimes t^i < L\mathfrak{g},</math> the bracket restricts to a product<math display=block>[\cdot\, , \, \cdot]: \mathfrak{g}_i \times \mathfrak{g}_j \rightarrow \mathfrak{g}_{i+j},</math> hence giving the loop algebra a <math>\mathbb{Z}</math>-[[graded Lie algebra]] structure. In particular, the bracket restricts to the 'zero-mode' subalgebra <math>\mathfrak{g}_0 \cong \mathfrak{g}</math>. == Derivation == {{See also|Derivation (differential algebra)}} There is a natural derivation on the loop algebra, conventionally denoted <math>d</math> acting as <math display=block>d: L\mathfrak{g} \rightarrow L\mathfrak{g}</math> <math display=block>d(X\otimes t^n) = nX\otimes t^n</math> and so can be thought of formally as <math>d = t\frac{d}{dt}</math>. It is required to define [[affine Lie algebra]]s, which are used in physics, particularly [[conformal field theory]]. ==Loop group== Similarly, a set of all smooth maps from {{math|''S''<sup>1</sup>}} to a [[Lie group]] {{math|''G''}} forms an infinite-dimensional Lie group (Lie group in the sense we can define [[functional derivative]]s over it) called the '''[[loop group]]'''. The Lie algebra of a loop group is the corresponding loop algebra. ==Affine Lie algebras as central extension of loop algebras== {{See also |Lie algebra extension#Polynomial loop-algebra |Affine Lie algebra}} If <math>\mathfrak{g}</math> is a [[semisimple Lie algebra]], then a nontrivial [[Group extension#Central extension|central extension]] of its loop algebra <math>L\mathfrak g</math> gives rise to an [[affine Lie algebra]]. Furthermore this central extension is unique.<ref>{{cite book |first=V.G. |last=Kac|title=Infinite-dimensional Lie algebras|edition=3rd|publisher=[[Cambridge University Press]]|year=1990|author-link=Victor Kac|isbn=978-0-521-37215-2 |at=Exercise 7.8.}}</ref> The central extension is given by adjoining a central element <math>\hat k</math>, that is, for all <math>X\otimes t^n \in L\mathfrak{g}</math>, <math display=block>[\hat k, X\otimes t^n] = 0,</math> and modifying the bracket on the loop algebra to <math display=block>[X\otimes t^m, Y\otimes t^n] = [X,Y] \otimes t^{m + n} + mB(X,Y) \delta_{m+n,0} \hat k,</math> where <math>B(\cdot, \cdot)</math> is the [[Killing form]]. The central extension is, as a vector space, <math>L\mathfrak{g} \oplus \mathbb{C}\hat k</math> (in its usual definition, as more generally, <math>\mathbb{C}</math> can be taken to be an arbitrary field). === Cocycle === {{See also|Lie algebra extension#Central}} Using the language of [[Lie algebra cohomology]], the central extension can be described using a 2-[[cocycle]] on the loop algebra. This is the map<math display=block>\varphi: L\mathfrak g \times L\mathfrak g \rightarrow \mathbb{C}</math> satisfying <math display=block>\varphi(X\otimes t^m, Y\otimes t^n) = mB(X,Y)\delta_{m+n,0}.</math> Then the extra term added to the bracket is <math>\varphi(X\otimes t^m, Y\otimes t^n)\hat k.</math> ===Affine Lie algebra=== In physics, the central extension <math>L\mathfrak g \oplus \mathbb C \hat k</math> is sometimes referred to as the affine Lie algebra. In mathematics, this is insufficient, and the full affine Lie algebra is the vector space<ref name="BYB">P. Di Francesco, P. Mathieu, and D. Sénéchal, ''Conformal Field Theory'', 1997, {{ISBN|0-387-94785-X}}</ref><math display=block>\hat \mathfrak{g} = L\mathfrak{g} \oplus \mathbb C \hat k \oplus \mathbb C d</math> where <math>d</math> is the derivation defined above. On this space, the Killing form can be extended to a non-degenerate form, and so allows a root system analysis of the affine Lie algebra. ==References== {{reflist}} {{refbegin}} *{{citation|first=Jurgen|last= Fuchs|title=Affine Lie Algebras and Quantum Groups|year=1992|publisher=Cambridge University Press|isbn=0-521-48412-X}} {{refend}} {{String theory topics |state=collapsed}} [[Category:Lie algebras]] [[Category:String theory]] [[Category:Conformal field theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Distinguish
(
edit
)
Template:ISBN
(
edit
)
Template:Math
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:String theory topics
(
edit
)