Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lucas–Carmichael number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Type of positive composite integer}} In [[mathematics]], a '''Lucas–Carmichael number''' is a positive [[Composite number|composite]] integer ''n'' such that # If ''p'' is a [[prime factor]] of ''n'', then ''p'' + 1 is a factor of ''n'' + 1; # ''n'' is odd and [[square-free integer|square-free]]. The first condition resembles Korselt's criterion for [[Carmichael number]]s, where -1 is replaced with +1. The second condition eliminates from consideration some trivial cases like cubes of prime numbers, such as 8 or 27, which otherwise would be Lucas–Carmichael numbers (since ''n''<sup>3</sup> + 1 = (''n'' + 1)(''n''<sup>2</sup> − ''n'' + 1) is always divisible by ''n'' + 1). They are named after [[Édouard Lucas]] and [[Robert Daniel Carmichael|Robert Carmichael]]. == Properties == The smallest Lucas–Carmichael number is 399 = 3 × 7 × 19. It is easy to verify that 3+1, 7+1, and 19+1 are all factors of 399+1 = 400. The smallest Lucas–Carmichael number with 4 factors is 8855 = 5 × 7 × 11 × 23. The smallest Lucas–Carmichael number with 5 factors is 588455 = 5 × 7 × 17 × 23 × 43. It is not known whether any Lucas–Carmichael number is also a [[Carmichael number]]. [[Thomas Wright (mathematician)|Thomas Wright]] proved in 2016 that there are infinitely many Lucas–Carmichael numbers.<ref>{{cite journal |author=Thomas Wright |title=There are infinitely many elliptic Carmichael numbers |journal=[[Bull. London Math. Soc.]] |volume=50 |year=2018 |issue=5 |pages=791–800 |arxiv=1609.00231 |doi=10.1112/blms.12185 |s2cid=119676706 }}</ref> If we let <math> N(X)</math> denote the number of Lucas–Carmichael numbers up to <math> X</math>, Wright showed that there exists a positive constant <math>K</math> such that <math> N(X) \gg X^{K/\left( \log\log \log X\right)^2}</math>. == List of Lucas–Carmichael numbers == The first few Lucas–Carmichael numbers {{OEIS|id=A006972}} and their prime factors are listed below. {{div col|colwidth=20em}} {| |- | 399 || = 3 × 7 × 19 |- | 935 || = 5 × 11 × 17 |- | 2015 || = 5 × 13 × 31 |- | 2915 || = 5 × 11 × 53 |- | 4991 || = 7 × 23 × 31 |- | 5719 || = 7 × 19 × 43 |- | 7055 || = 5 × 17 × 83 |- | 8855 || = 5 × 7 × 11 × 23 |- | 12719 || = 7 × 23 × 79 |- | 18095 || = 5 × 7 × 11 × 47 |- | 20705 || = 5 × 41 × 101 |- | 20999 || = 11 × 23 × 83 |- | 22847 || = 11 × 31 × 67 |- | 29315 || = 5 × 11 × 13 × 41 |- | 31535 || = 5 × 7 × 17 × 53 |- | 46079 || = 11 × 59 × 71 |- | 51359 || = 7 × 11 × 23 × 29 |- | 60059 || = 19 × 29 × 109 |- | 63503 || = 11 × 23 × 251 |- | 67199 || = 11 × 41 × 149 |- | 73535 || = 5 × 7 × 11 × 191 |- | 76751 || = 23 × 47 × 71 |- | 80189 || = 17 × 53 × 89 |- | 81719 || = 11 × 17 × 19 × 23 |- | 88559 || = 19 × 59 × 79 |- | 90287 || = 17 × 47 × 113 |- | 104663 || = 13 × 83 × 97 |- | 117215 || = 5 × 7 × 17 × 197 |- | 120581 || = 17 × 41 × 173 |- | 147455 || = 5 × 7 × 11 × 383 |- | 152279 || = 29 × 59 × 89 |- | 155819 || = 19 × 59 × 139 |- | 162687 || = 3 × 7 × 61 × 127 |- | 191807 || = 7 × 11 × 47 × 53 |- | 194327 || = 7 × 17 × 23 × 71 |- | 196559 || = 11 × 107 × 167 |- | 214199 || = 23 × 67 × 139 |- | 218735 || = 5 × 11 × 41 × 97 |- | 230159 || = 47 × 59 × 83 |- | 265895 || = 5 × 7 × 71 × 107 |- | 357599 || = 11 × 19 × 29 × 59 |- | 388079 || = 23 × 47 × 359 |- | 390335 || = 5 × 11 × 47 × 151 |- | 482143 || = 31 × 103 × 151 |- | 588455 || = 5 × 7 × 17 × 23 × 43 |- | 653939 || = 11 × 13 × 17 × 269 |- | 663679 || = 31 × 79 × 271 |- | 676799 || = 19 × 179 × 199 |- | 709019 || = 17 × 179 × 233 |- | 741311 || = 53 × 71 × 197 |- | 760655 || = 5 × 7 × 103 × 211 |- | 761039 || = 17 × 89 × 503 |- | 776567 || = 11 × 227 × 311 |- | 798215 || = 5 × 11 × 23 × 631 |- | 880319 || = 11 × 191 × 419 |- | 895679 || = 17 × 19 × 47 × 59 |- | 913031 || = 7 × 23 × 53 × 107 |- | 966239 || = 31 × 71 × 439 |- | 966779 || = 11 × 179 × 491 |- | 973559 || = 29 × 59 × 569 |- | 1010735 || = 5 × 11 × 17 × 23 × 47 |- | 1017359 || = 7 × 23 × 71 × 89 |- | 1097459 || = 11 × 19 × 59 × 89 |- | 1162349 || = 29 × 149 × 269 |- | 1241099 || = 19 × 83 × 787 |- | 1256759 || = 7 × 17 × 59 × 179 |- | 1525499 || = 53 × 107 × 269 |- | 1554119 || = 7 × 53 × 59 × 71 |- | 1584599 || = 37 × 113 × 379 |- | 1587599 || = 13 × 97 × 1259 |- | 1659119 || = 7 × 11 × 29 × 743 |- | 1707839 || = 7 × 29 × 47 × 179 |- | 1710863 || = 7 × 11 × 17 × 1307 |- | 1719119 || = 47 × 79 × 463 |- | 1811687 || = 23 × 227 × 347 |- | 1901735 || = 5 × 11 × 71 × 487 |- | 1915199 || = 11 × 13 × 59 × 227 |- | 1965599 || = 79 × 139 × 179 |- | 2048255 || = 5 × 11 × 167 × 223 |- | 2055095 || = 5 × 7 × 71 × 827 |- | 2150819 || = 11 × 19 × 41 × 251 |- | 2193119 || = 17 × 23 × 71 × 79 |- | 2249999 || = 19 × 79 × 1499 |- | 2276351 || = 7 × 11 × 17 × 37 × 47 |- | 2416679 || = 23 × 179 × 587 |- | 2581319 || = 13 × 29 × 41 × 167 |- | 2647679 || = 31 × 223 × 383 |- | 2756159 || = 7 × 17 × 19 × 23 × 53 |- | 2924099 || = 29 × 59 × 1709 |- | 3106799 || = 29 × 149 × 719 |- | 3228119 || = 19 × 23 × 83 × 89 |- | 3235967 || = 7 × 17 × 71 × 383 |- | 3332999 || = 19 × 23 × 29 × 263 |- | 3354695 || = 5 × 17 × 61 × 647 |- | 3419999 || = 11 × 29 × 71 × 151 |- | 3441239 || = 109 × 131 × 241 |- | 3479111 || = 83 × 167 × 251 |- | 3483479 || = 19 × 139 × 1319 |- | 3700619 || = 13 × 41 × 53 × 131 |- | 3704399 || = 47 × 269 × 293 |- | 3741479 || = 7 × 17 × 23 × 1367 |- | 4107455 || = 5 × 11 × 17 × 23 × 191 |- | 4285439 || = 89 × 179 × 269 |- | 4452839 || = 37 × 151 × 797 |- | 4587839 || = 53 × 107 × 809 |- | 4681247 || = 47 × 103 × 967 |- | 4853759 || = 19 × 23 × 29 × 383 |- | 4874639 || = 7 × 11 × 29 × 37 × 59 |- | 5058719 || = 59 × 179 × 479 |- | 5455799 || = 29 × 419 × 449 |- | 5669279 || = 7 × 11 × 17 × 61 × 71 |- | 5807759 || = 83 × 167 × 419 |- | 6023039 || = 11 × 29 × 79 × 239 |- | 6514199 || = 43 × 197 × 769 |- | 6539819 || = 11 × 13 × 19 × 29 × 83 |- | 6656399 || = 29 × 89 × 2579 |- | 6730559 || = 11 × 23 × 37 × 719 |- | 6959699 || = 59 × 179 × 659 |- | 6994259 || = 17 × 467 × 881 |- | 7110179 || = 37 × 41 × 43 × 109 |- | 7127999 || = 23 × 479 × 647 |- | 7234163 || = 17 × 41 × 97 × 107 |- | 7274249 || = 17 × 449 × 953 |- | 7366463 || = 13 × 23 × 71 × 347 |- | 8159759 || = 19 × 29 × 59 × 251 |- | 8164079 || = 7 × 11 × 229 × 463 |- | 8421335 || = 5 × 13 × 23 × 43 × 131 |- | 8699459 || = 43 × 307 × 659 |- | 8734109 || = 37 × 113 × 2089 |- | 9224279 || = 53 × 269 × 647 |- | 9349919 || = 19 × 29 × 71 × 239 |- | 9486399 || = 3 × 13 × 79 × 3079 |- | 9572639 || = 29 × 41 × 83 × 97 |- | 9694079 || = 47 × 239 × 863 |- | 9868715 || = 5 × 43 × 197 × 233 |} {{div col end}} ==References== {{Reflist}} ==External links== * {{cite book |title=Unsolved Problems in Number Theory |edition=3rd |author=Richard Guy |publisher=Springer Verlag |year=2004 |chapter=Section A13}} * {{PlanetMath|lucascarmichaelnumber}} * {{cite web |title=Something special about 399 (and 2015) - Numberphile |url=https://www.youtube.com/watch?v=yfr3BIk6KFc |archive-url=https://ghostarchive.org/varchive/youtube/20211222/yfr3BIk6KFc |archive-date=2021-12-22 |url-status=live|website=YouTube| date=15 January 2015 }}{{cbignore}} {{Classes of natural numbers}} {{DEFAULTSORT:Lucas-Carmichael number}} [[Category:Eponymous numbers in mathematics]] [[Category:Integer sequences]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cbignore
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:OEIS
(
edit
)
Template:PlanetMath
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)