Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lucas chain
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|A restricted type of addition chain}} In [[mathematics]], a '''Lucas chain''' is a restricted type of [[addition chain]], named for the French mathematician [[Édouard Lucas]]. It is a [[sequence]] :''a''<sub>0</sub>, ''a''<sub>1</sub>, ''a''<sub>2</sub>, ''a''<sub>3</sub>, ... that satisfies :''a''<sub>0</sub>=1, and :for each ''k'' > 0: ''a''<sub>''k''</sub> = ''a''<sub>''i''</sub> + ''a''<sub>''j''</sub>, and either ''a''<sub>''i''</sub> = ''a''<sub>''j''</sub> or |''a''<sub>''i''</sub> − ''a''<sub>''j''</sub>| = ''a''<sub>''m''</sub>, for some ''i'', ''j'', ''m'' < ''k''.<ref name=G169>Guy (2004) p.169</ref><ref>{{Cite web|last=Weisstein|first=Eric W.|title=Lucas Chain|url=https://mathworld.wolfram.com/LucasChain.html|access-date=2020-08-11|website=mathworld.wolfram.com|language=en}}</ref> The sequence of powers of 2 (1, 2, 4, 8, 16, ...) and the [[Fibonacci sequence]] (with a slight adjustment of the starting point 1, 2, 3, 5, 8, ...) are simple examples of Lucas chains. Lucas chains were introduced by [[Peter Montgomery (mathematician)|Peter Montgomery]] in 1983.<ref>Kutz (2002)</ref> If ''L''(''n'') is the length of the shortest Lucas chain for ''n'', then Kutz has shown that most ''n'' do not have ''L'' < (1-ε) log<sub>φ</sub> ''n'', where φ is the [[Golden ratio]].<ref name=G169/> == References == {{Reflist}} * {{cite book |last=Guy | first=Richard K. | authorlink=Richard K. Guy | title=Unsolved problems in number theory | publisher=[[Springer-Verlag]] |edition=3rd | year=2004 |isbn=978-0-387-20860-2 | zbl=1058.11001 | pages=169–171 }} * {{cite journal|first=Martin | last=Kutz |title=Lower Bounds For Lucas Chains |journal=SIAM J. Comput. |year=2002 |volume=31 | number= 6 |pages= 1896–1908 |url=http://www.mpi-inf.mpg.de/~mkutz/pubs/Kutz_LucasChains.pdf | zbl=1055.11077 | doi=10.1137/s0097539700379255}} * {{Cite journal|first=Peter L. | last=Montgomery | authorlink=Peter Montgomery (mathematician) | title=Evaluating Recurrences of Form ''X''<sub>''m+n''</sub> = ''f(X''<sub>''m''</sub>, ''X''<sub>''n''</sub>, ''X''<sub>''m-n''</sub>) Via Lucas Chains | year=1983 | journal=Unpublished|url=http://cr.yp.to/bib/1992/montgomery-lucas.ps |format=PS }} {{DEFAULTSORT:Lucas Chain}} [[Category:Integer sequences]] [[Category:Addition chains]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)