Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lucas number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Infinite integer series where the next number is the sum of the two preceding it}} {{distinguish|text=[[Lucas sequence]]s, the general class of sequences to which the Lucas numbers belong}} {{More footnotes|date=December 2019}} [[File:Lucas number spiral.svg|400x240px|thumb|right|The Lucas spiral, made with quarter-[[circular arc|arcs]], is a good approximation of the [[golden spiral]] when its terms are large. However, when its terms become very small, the arc's radius decreases rapidly from 3 to 1 then increases from 1 to 2.]] The '''Lucas sequence''' is an [[integer sequence]] named after the mathematician [[Édouard Lucas|François Édouard Anatole Lucas]] (1842–1891), who studied both that [[sequence]] and the closely related [[Fibonacci sequence]]. Individual numbers in the Lucas sequence are known as '''Lucas numbers'''. Lucas numbers and Fibonacci numbers form complementary instances of [[Lucas sequence]]s. The Lucas sequence has the same [[recurrence relation|recursive relationship]] as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values.<ref name="mathworld wolfram weisstein">{{Cite web|last=Weisstein|first=Eric W.|title=Lucas Number|url=https://mathworld.wolfram.com/LucasNumber.html|access-date=2020-08-11|website=mathworld.wolfram.com|language=en}}</ref> This produces a sequence where the ratios of successive terms approach the [[golden ratio]], and in fact the terms themselves are [[rounding]]s of [[integer]] powers of the golden ratio.<ref>{{cite book |last1=Parker |first1=Matt |title=Things to Make and Do in the Fourth Dimension |date=2014 |publisher=Farrar, Straus and Giroux |isbn=978-0-374-53563-6 |page=284 |language=English |chapter=13}}</ref> The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.<ref>{{cite book |last1=Parker |first1=Matt |title=Things to Make and Do in the Fourth Dimension |date=2014 |publisher=Farrar, Straus and Giroux |isbn=978-0-374-53563-6 |page=282 |language=English |chapter=13}}</ref> The first few Lucas numbers are : 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ... . {{OEIS|id=A000032}} which coincides for example with the number of [[Independent set (graph theory)|independent vertex sets ]] for [[cyclic graph|cyclic graphs]] <math>C_n</math> of length <math>n\geq2</math>.<ref name="mathworld wolfram weisstein" /> == Definition == As with the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediately previous terms, thereby forming a [[Generalizations of Fibonacci numbers#Fibonacci integer sequences|Fibonacci integer sequence]]. The first two Lucas numbers are <math>L_0=2</math> and <math>L_1=1</math>, which differs from the first two Fibonacci numbers <math>F_0=0</math> and <math>F_1=1</math>. Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties. The Lucas numbers may thus be defined as follows: :<math> L_n := \begin{cases} 2 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ L_{n-1}+L_{n-2} & \text{if } n > 1. \end{cases} </math> (where ''n'' belongs to the [[natural number]]s) All Fibonacci-like integer sequences appear in shifted form as a row of the [[Wythoff array]]; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers [[limit of a sequence|converges]] to the [[golden ratio]]. ==Extension to negative integers== Using <math>L_{n-2}=L_{n}-L_{n-1}</math>, one can extend the Lucas numbers to negative integers to obtain a doubly infinite sequence: :..., −11, 7, −4, 3, −1, 2, 1, 3, 4, 7, 11, ... (terms <math>L_n</math> for <math>-5\leq{}n\leq5</math> are shown). The formula for terms with negative indices in this sequence is : <math>L_{-n}=(-1)^nL_n.\!</math> ==Relationship to Fibonacci numbers== [[File:Comparison_Fibonacci_and_Lucas_numbers.svg|thumb|300px|The first identity expressed visually]] The Lucas numbers are related to the Fibonacci numbers by many [[identity (mathematics)|identities]]. Among these are the following: * <math>L_n = F_{n-1}+F_{n+1} = 2F_{n+1}-F_n</math> * <math>L_{m+n} = L_{m+1}F_{n}+L_mF_{n-1}</math> * <math>F_{2n} = L_n F_n</math> * <math>F_{n+k} + (-1)^k F_{n-k} = L_k F_n</math> * <math>2F_{2n+k} = L_{n} F_{n+k} + L_{n+k} F_{n}</math> * <math>L_{2n} = 5 F_n^2 + 2(-1)^n = L_n^2 - 2(-1)^n</math>, so <math>\lim_{n\to\infty} \frac{L_n}{F_n}=\sqrt{5}</math>. * <math> \vert L_n - \sqrt{5} F_n \vert = \frac{2}{\varphi^n} \to 0 </math> * <math>L_{n+k} - (-1)^k L_{n-k} = 5 F_n F_k</math>; in particular, <math>F_n = {L_{n-1}+L_{n+1} \over 5}</math>, so <math>5F_n + L_n = 2L_{n+1}</math>. Their [[Closed-form expression|closed formula]] is given as: :<math>L_n = \varphi^n + (1-\varphi)^{n} = \varphi^n + (- \varphi)^{-n}=\left({ 1+ \sqrt{5} \over 2}\right)^n + \left({ 1- \sqrt{5} \over 2}\right)^n\, ,</math> where <math>\varphi</math> is the [[golden ratio]]. Alternatively, as for <math>n>1</math> the magnitude of the term <math>(-\varphi)^{-n}</math> is less than 1/2, <math>L_n</math> is the closest integer to <math>\varphi^n</math> or, equivalently, the integer part of <math>\varphi^n+1/2</math>, also written as <math>\lfloor \varphi^n+1/2 \rfloor</math>. Combining the above with [[Binet's formula]], :<math>F_n = \frac{\varphi^n - (1-\varphi)^{n}}{\sqrt{5}}\, ,</math> a formula for <math>\varphi^n</math> is obtained: :<math>\varphi^n = {{L_n + F_n \sqrt{5}} \over 2}\, .</math> For integers ''n'' ≥ 2, we also get: :<math> \varphi^n = L_n - (- \varphi)^{-n} = L_n - (-1)^n L_n^{-1} - L_n^{-3} + R </math> with remainder ''R'' satisfying :<math> \vert R \vert < 3 L_n^{-5} </math>. ==Lucas identities== Many of the Fibonacci identities have parallels in Lucas numbers. For example, the [[Cassini identity]] becomes :<math>L_n^2 - L_{n-1}L_{n+1} = (-1)^{n}5</math> Also :<math>\sum_{k=0}^n L_k = L_{n+2} - 1</math> :<math>\sum_{k=0}^n L_k^2 = L_nL_{n+1} + 2</math> :<math>2L_{n-1}^2 + L_n^2 = L_{2n+1} + 5F_{n-2}^2</math> where <math>\textstyle F_n=\frac{L_{n-1}+L_{n+1}}{5}</math>. :<math> L_n^k = \sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} (-1)^{nj} \binom{k}{j} L'_{(k-2j)n} </math> where <math>L'_n=L_n</math> except for <math>L'_0=1</math>. For example if ''n'' is [[parity (mathematics)|odd]], <math>L_n^3 = L'_{3n}-3L'_n</math> and <math>L_n^4 = L'_{4n}-4L'_{2n}+6L'_0</math> Checking, <math>L_3=4, 4^3=64=76-3(4)</math>, and <math>256=322-4(18)+6</math> ==Generating function== Let :<math>\Phi(x) = 2 + x + 3x^2 + 4x^3 + \cdots = \sum_{n = 0}^\infty L_nx^n</math> be the [[generating function]] of the Lucas numbers. By a direct computation, :<math>\begin{align} \Phi(x) &= L_0 + L_1x + \sum_{n = 2}^\infty L_nx^n \\ &= 2 + x + \sum_{n = 2}^\infty (L_{n - 1} + L_{n - 2})x^n \\ &= 2 + x + \sum_{n = 1}^\infty L_nx^{n + 1} + \sum_{n = 0}^\infty L_nx^{n + 2} \\ &= 2 + x + x(\Phi(x) - 2) + x^2 \Phi(x) \end{align}</math> which can be rearranged as :<math>\Phi(x) = \frac{2 - x}{1 - x - x^2}</math> <math>\Phi\!\left(-\frac{1}{x}\right)</math> gives the generating function for the [[#Extension_to_negative_integers|negative indexed Lucas numbers]], <math>\sum_{n = 0}^\infty (-1)^nL_nx^{-n} = \sum_{n = 0}^\infty L_{-n}x^{-n}</math>, and :<math>\Phi\!\left(-\frac{1}{x}\right) = \frac{x + 2x^2}{1 - x - x^2}</math> <math>\Phi(x)</math> satisfies the [[functional equation]] :<math>\Phi(x) - \Phi\!\left(-\frac{1}{x}\right) = 2</math> As the [[Fibonacci number#Generating function|generating function for the Fibonacci numbers]] is given by :<math>s(x) = \frac{x}{1 - x - x^2}</math> we have :<math>s(x) + \Phi(x) = \frac{2}{1 - x - x^2}</math> which [[mathematical proof|proves]] that :<math>F_n + L_n = 2F_{n+1},</math> and :<math>5s(x) + \Phi(x) = \frac2x\Phi(-\frac1x) = 2\frac{1}{1 - x - x^2} + 4\frac{x}{1 - x - x^2}</math> proves that :<math>5F_n + L_n = 2L_{n+1}</math> The [[partial fraction decomposition]] is given by :<math>\Phi(x) = \frac{1}{1 - \phi x} + \frac{1}{1 - \psi x}</math> where <math>\phi = \frac{1 + \sqrt{5}}{2}</math> is the golden ratio and <math>\psi = \frac{1 - \sqrt{5}}{2}</math> is its [[conjugate (square roots)|conjugate]]. This can be used to prove the generating function, as :<math>\sum_{n = 0}^\infty L_nx^n = \sum_{n = 0}^\infty (\phi^n + \psi^n)x^n = \sum_{n = 0}^\infty \phi^nx^n + \sum_{n = 0}^\infty \psi^nx^n = \frac{1}{1 - \phi x} + \frac{1}{1 - \psi x} = \Phi(x)</math> ==Congruence relations== If <math>F_n\geq 5</math> is a Fibonacci number then no Lucas number is divisible by <math>F_n</math>. The Lucas numbers satisfy [[Gauss congruence]]. This implies that <math>L_n</math> is [[modular arithmetic|congruent]] to 1 modulo <math>n</math> if <math>n</math> is [[prime number|prime]]. The [[composite number|composite]] values of <math>n</math> which satisfy this property are known as [[Lucas pseudoprime#Fibonacci pseudoprimes|Fibonacci pseudoprimes]]. <math>L_n-L_{n-4}</math> is congruent to 0 modulo 5. == Lucas primes == A '''Lucas prime''' is a Lucas number that is [[prime number|prime]]. The first few Lucas primes are :2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... {{OEIS|id=A005479}}. The indices of these primes are (for example, ''L''<sub>4</sub> = 7) :0, 2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503, 613, 617, 863, 1097, 1361, 4787, 4793, 5851, 7741, 8467, ... {{OEIS|id=A001606}}. {{as of|2015|09}}, the largest confirmed Lucas prime is ''L''<sub>148091</sub>, which has 30950 decimal digits.<ref>{{cite web |title=The Top Twenty: Lucas Number |url=https://primes.utm.edu/top20/page.php?id=48 |website=primes.utm.edu |access-date=6 January 2022}}</ref> {{as of|2022|08}}, the largest known Lucas [[probable prime]] is ''L''<sub>5466311</sub>, with 1,142,392 decimal digits.<ref>{{cite web |title=Henri & Renaud Lifchitz's PRP Top - Search by form |url=http://www.primenumbers.net/prptop/searchform.php?form=L%28n%29&action=Search |website=www.primenumbers.net |access-date=6 January 2022}}</ref> If ''L<sub>n</sub>'' is prime then ''n'' is 0, prime, or a [[power of 2]].<ref>Chris Caldwell, "[http://primes.utm.edu/glossary/page.php?sort=LucasPrime The Prime Glossary: Lucas prime]" from The [[Prime Pages]].</ref> ''L''<sub>2<sup>''m''</sup></sub> is prime for ''m'' = 1, 2, 3, and 4 and no other known values of ''m''. ==Lucas polynomials== In the same way as [[Fibonacci polynomials]] are derived from the [[Fibonacci number]]s, the [[Lucas polynomials]] <math>L_{n}(x)</math> are a [[polynomial sequence]] derived from the Lucas numbers. == Continued fractions for powers of the golden ratio == Close [[Diophantine approximation|rational approximations]] for powers of the golden ratio can be obtained from their [[continued fraction]]s. For positive integers ''n'', the continued fractions are: :<math> \varphi^{2n-1} = [L_{2n-1}; L_{2n-1}, L_{2n-1}, L_{2n-1}, \ldots] </math> :<math> \varphi^{2n} = [L_{2n}-1; 1, L_{2n}-2, 1, L_{2n}-2, 1, L_{2n}-2, 1, \ldots] </math>. For example: :<math> \varphi^5 = [11; 11, 11, 11, \ldots] </math> is the limit of :<math> \frac{11}{1}, \frac{122}{11}, \frac{1353}{122}, \frac{15005}{1353}, \ldots </math> with the error in each term being about 1% of the error in the previous term; and :<math> \varphi^6 = [18 - 1; 1, 18 - 2, 1, 18 - 2, 1, 18 - 2, 1, \ldots] = [17; 1, 16, 1, 16, 1, 16, 1, \ldots] </math> is the limit of :<math> \frac{17}{1}, \frac{18}{1}, \frac{305}{17}, \frac{323}{18}, \frac{5473}{305}, \frac{5796}{323}, \frac{98209}{5473}, \frac{104005}{5796}, \ldots </math> with the error in each term being about 0.3% that of the ''second'' previous term. ==Applications== Lucas numbers are the second most common pattern in [[sunflower]]s after Fibonacci numbers, when clockwise and counter-clockwise spirals are counted, according to an analysis of 657 sunflowers in 2016.<ref>{{Cite journal |last1=Swinton |first1=Jonathan |last2=Ochu |first2=Erinma |last3=null |first3=null |title=Novel Fibonacci and non-Fibonacci structure in the sunflower: results of a citizen science experiment |journal=Royal Society Open Science |year=2016 |volume=3 |issue=5 |pages=160091 |doi=10.1098/rsos.160091 |pmc=4892450 |pmid=27293788|bibcode=2016RSOS....360091S }}</ref> ==See also== *[[Generalizations of Fibonacci numbers]] == References == {{reflist}} ==External links== * {{springer|title=Lucas polynomials|id=p/l130120}} * {{MathWorld|urlname=LucasNumber|title=Lucas Number}} * {{MathWorld | urlname=LucasPolynomial | title=Lucas Polynomial}} * "[https://web.archive.org/web/20051126021243/http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/lucasNbs.html The Lucas Numbers]", Dr Ron Knott * [https://web.archive.org/web/20051030021553/http://milan.milanovic.org/math/english/lucas/lucas.html Lucas numbers and the Golden Section] * [https://web.archive.org/web/20070216024906/http://www.plenilune.pwp.blueyonder.co.uk/fibonacci-calculator.asp A Lucas Number Calculator can be found here.] * {{OEIS el|1=A000032|2=Lucas numbers beginning at 2|formalname=Lucas numbers beginning at 2: L(n) = L(n-1) + L(n-2), L(0) = 2, L(1) = 1}} {{Prime number classes}} {{Classes of natural numbers}} {{series (mathematics)}} [[Category:Eponymous numbers in mathematics]] [[Category:Integer sequences]] [[Category:Fibonacci numbers]] [[Category:Recurrence relations]] [[Category:Unsolved problems in mathematics]] [[bn:লুকাস ধারা]] [[fr:Suite de Lucas]] [[he:סדרת לוקאס]] [[pt:Sequência de Lucas]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:As of
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:Distinguish
(
edit
)
Template:MathWorld
(
edit
)
Template:More footnotes
(
edit
)
Template:OEIS
(
edit
)
Template:OEIS el
(
edit
)
Template:Prime number classes
(
edit
)
Template:Reflist
(
edit
)
Template:Series (mathematics)
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)