Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lucas sequence
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Certain constant-recursive integer sequences}} {{distinguish|text=the sequence of [[Lucas number]]s, which is a particular Lucas sequence}} In [[mathematics]], the '''Lucas sequences''' <math>U_n(P,Q)</math> and <math>V_n(P, Q)</math> are certain [[constant-recursive sequence|constant-recursive]] [[integer sequence]]s that satisfy the [[recurrence relation]] : <math>x_n = P \cdot x_{n - 1} - Q \cdot x_{n - 2}</math> where <math>P</math> and <math>Q</math> are fixed [[integer]]s. Any sequence satisfying this recurrence relation can be represented as a [[linear combination]] of the Lucas sequences <math>U_n(P, Q)</math> and <math>V_n(P, Q).</math> More generally, Lucas sequences <math>U_n(P, Q)</math> and <math>V_n(P, Q)</math> represent sequences of [[polynomial]]s in <math>P</math> and <math>Q</math> with integer [[coefficient]]s. Famous examples of Lucas sequences include the [[Fibonacci number]]s, [[Mersenne number]]s, [[Pell number]]s, [[Lucas number]]s, [[Jacobsthal number]]s, and a superset of [[Fermat number]]s (see below). Lucas sequences are named after the [[France|French]] mathematician [[Édouard Lucas]]. == Recurrence relations == Given two integer parameters <math>P</math> and <math>Q</math>, the Lucas sequences of the first kind <math>U_n(P,Q)</math> and of the second kind <math>V_n(P,Q)</math> are defined by the [[recurrence relation]]s: :<math>\begin{align} U_0(P,Q)&=0, \\ U_1(P,Q)&=1, \\ U_n(P,Q)&=P\cdot U_{n-1}(P,Q)-Q\cdot U_{n-2}(P,Q) \mbox{ for }n>1, \end{align}</math> and :<math>\begin{align} V_0(P,Q)&=2, \\ V_1(P,Q)&=P, \\ V_n(P,Q)&=P\cdot V_{n-1}(P,Q)-Q\cdot V_{n-2}(P,Q) \mbox{ for }n>1. \end{align}</math> It is not hard to show that for <math>n>0</math>, :<math>\begin{align} U_n(P,Q)&=\frac{P\cdot U_{n-1}(P,Q) + V_{n-1}(P,Q)}{2}, \\ V_n(P,Q)&=\frac{(P^2-4Q)\cdot U_{n-1}(P,Q)+P\cdot V_{n-1}(P,Q)}{2}. \end{align}</math> The above relations can be stated in [[matrix (mathematics)|matrix]] form as follows: : <math>\begin{bmatrix} U_n(P,Q)\\ U_{n+1}(P,Q)\end{bmatrix} = \begin{bmatrix} 0 & 1\\ -Q & P\end{bmatrix}\cdot \begin{bmatrix} U_{n-1}(P,Q)\\ U_n(P,Q)\end{bmatrix},</math> <br> : <math>\begin{bmatrix} V_n(P,Q)\\ V_{n+1}(P,Q)\end{bmatrix} = \begin{bmatrix} 0 & 1\\ -Q & P\end{bmatrix}\cdot \begin{bmatrix} V_{n-1}(P,Q)\\ V_n(P,Q)\end{bmatrix},</math> <br> : <math>\begin{bmatrix} U_n(P,Q)\\ V_n(P,Q)\end{bmatrix} = \begin{bmatrix} P/2 & 1/2\\ (P^2-4Q)/2 & P/2\end{bmatrix}\cdot \begin{bmatrix} U_{n-1}(P,Q)\\ V_{n-1}(P,Q)\end{bmatrix}.</math> == Examples == Initial terms of Lucas sequences <math>U_n(P,Q)</math> and <math>V_n(P,Q)</math> are given in the table: :<math> \begin{array}{r|l|l} n & U_n(P,Q) & V_n(P,Q) \\ \hline 0 & 0 & 2 \\ 1 & 1 & P \\ 2 & P & {P}^{2}-2Q \\ 3 & {P}^{2}-Q & {P}^{3}-3PQ \\ 4 & {P}^{3}-2PQ & {P}^{4}-4{P}^{2}Q+2{Q}^{2} \\ 5 & {P}^{4}-3{P}^{2}Q+{Q}^{2} & {P}^{5}-5{P}^{3}Q+5P{Q}^{2} \\ 6 & {P}^{5}-4{P}^{3}Q+3P{Q}^{2} & {P}^{6}-6{P}^{4}Q+9{P}^{2}{Q}^{2}-2{Q}^{3} \end{array} </math> == Explicit expressions == The characteristic equation of the recurrence relation for Lucas sequences <math>U_n(P,Q)</math> and <math>V_n(P,Q)</math> is: :<math>x^2 - Px + Q=0 \,</math> <!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.--> It has the [[discriminant]] <math>D = P^2 - 4Q</math> and the [[root of a polynomial|roots]]: :<math>a = \frac{P+\sqrt{D}}2\quad\text{and}\quad b = \frac{P-\sqrt{D}}2. \,</math> Thus: :<math>a + b = P\, ,</math> :<math>a b = \frac{1}{4}(P^2 - D) = Q\, ,</math> :<math>a - b = \sqrt{D}\, .</math> Note that the sequence <math>a^n</math> and the sequence <math>b^n</math> also satisfy the recurrence relation. However these might not be integer sequences. === Distinct roots === When <math>D\ne 0</math>, ''a'' and ''b'' are distinct and one quickly verifies that :<math>a^n = \frac{V_n + U_n \sqrt{D}}{2}</math> :<math>b^n = \frac{V_n - U_n \sqrt{D}}{2}.</math> It follows that the terms of Lucas sequences can be expressed in terms of ''a'' and ''b'' as follows :<math>U_n = \frac{a^n-b^n}{a-b} = \frac{a^n-b^n}{ \sqrt{D}}</math> :<math>V_n = a^n+b^n \,</math> <!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.--> === Repeated root === The case <math> D=0 </math> occurs exactly when <math> P=2S \text{ and }Q=S^2</math> for some integer ''S'' so that <math>a=b=S</math>. In this case one easily finds that :<math>U_n(P,Q)=U_n(2S,S^2) = nS^{n-1}\,</math> :<math>V_n(P,Q)=V_n(2S,S^2)=2S^n.\,</math> == Properties == === Generating functions === The ordinary [[generating function]]s are :<math> \sum_{n\ge 0} U_n(P,Q)z^n = \frac{z}{1-Pz+Qz^2}; </math> :<math> \sum_{n\ge 0} V_n(P,Q)z^n = \frac{2-Pz}{1-Pz+Qz^2}. </math> === Pell equations === When <math>Q=\pm 1</math>, the Lucas sequences <math>U_n(P, Q)</math> and <math>V_n(P, Q)</math> satisfy certain [[Pell equation]]s: :<math>V_n(P,1)^2 - D\cdot U_n(P,1)^2 = 4,</math> :<math>V_n(P,-1)^2 - D\cdot U_n(P,-1)^2 = 4(-1)^n.</math> === Relations between sequences with different parameters === *For any number ''c'', the sequences <math>U_n(P', Q')</math> and <math>V_n(P', Q')</math> with ::<math> P' = P + 2c </math> ::<math> Q' = cP + Q + c^2 </math> :have the same discriminant as <math>U_n(P, Q)</math> and <math>V_n(P, Q)</math>: :: <math>P'^2 - 4Q' = (P+2c)^2 - 4(cP + Q + c^2) = P^2 - 4Q = D.</math> *For any number ''c'', we also have :: <math>U_n(cP,c^2Q) = c^{n-1}\cdot U_n(P,Q),</math> :: <math>V_n(cP,c^2Q) = c^n\cdot V_n(P,Q).</math> === Other relations === The terms of Lucas sequences satisfy relations that are generalizations of those between [[Fibonacci number]]s <math>F_n=U_n(1,-1)</math> and [[Lucas number]]s <math>L_n=V_n(1,-1)</math>. For example: :<math> \begin{array}{r|l} \text{General case} & (P,Q) = (1,-1), D = P^2 - 4Q = 5 \\ \hline D U_n = {V_{n+1} - Q V_{n-1}}=2V_{n+1}-P V_n & 5F_n = {L_{n+1} + L_{n-1}}=2L_{n+1} - L_{n} \\ V_n = U_{n+1} - Q U_{n-1}=2U_{n+1}-PU_n & L_n = F_{n+1} + F_{n-1}=2F_{n+1}-F_n \\ U_{m+n} = U_n U_{m+1} - Q U_m U_{n-1} = U_mV_n-Q^nU_{m-n} & F_{m+n} = F_n F_{m+1} + F_m F_{n-1} =F_mL_n-(-1)^nF_{m-n} \\ U_{2n} = U_n (U_{n+1} - QU_{n-1}) = U_n V_n & F_{2n} = F_n (F_{n+1} + F_{n-1}) = F_n L_n \\ U_{2n+1} = U_{n+1}^2 - Q U_n^2 & F_{2n+1} = F_{n+1}^2 + F_n^2 \\ V_{m+n} = V_m V_n - Q^n V_{m-n} = D U_m U_n + Q^n V_{m-n} & L_{m+n} = L_m L_n - (-1)^n L_{m-n} = 5 F_m F_n + (-1)^n L_{m-n} \\ V_{2n} = V_n^2 - 2Q^n = D U_n^2 + 2Q^n & L_{2n} = L_n^2 - 2(-1)^n = 5 F_n^2 + 2(-1)^n \\ U_{m+n} = \frac{U_mV_n+U_nV_m}{2} & F_{m+n} = \frac{F_mL_n+F_nL_m}{2} \\ V_{m+n}=\frac{V_mV_n+DU_mU_n}{2} & L_{m+n}=\frac{L_mL_n+5F_mF_n}{2} \\ V_n^2-DU_n^2=4Q^n & L_n^2-5F_n^2=4(-1)^n \\ U_n^2-U_{n-1}U_{n+1}=Q^{n-1} & F_n^2-F_{n-1}F_{n+1}=(-1)^{n-1} \\ V_n^2-V_{n-1}V_{n+1}=DQ^{n-1} & L_n^2-L_{n-1}L_{n+1}=5(-1)^{n-1} \\ 2^{n-1}U_n={n \choose 1}P^{n-1}+{n \choose 3}P^{n-3}D+\cdots & 2^{n-1}F_n={n \choose 1}+5{n \choose 3}+\cdots \\ 2^{n-1}V_n=P^n+{n \choose 2}P^{n-2}D+{n \choose 4}P^{n-4}D^2+\cdots & 2^{n-1}L_n=1+5{n \choose 2}+5^2{n \choose 4}+\cdots \end{array} </math> === Divisibility properties === Among the consequences is that <math>U_{km}(P,Q)</math> is a multiple of <math>U_m(P,Q)</math>, i.e., the sequence <math>(U_m(P,Q))_{m\ge1}</math> is a [[divisibility sequence]]. This implies, in particular, that <math>U_n(P,Q)</math> can be [[prime number|prime]] only when ''n'' is prime. Another consequence is an analog of [[exponentiation by squaring]] that allows fast computation of <math>U_n(P,Q)</math> for large values of ''n''. Moreover, if <math>\gcd(P,Q)=1</math>, then <math>(U_m(P,Q))_{m\ge1}</math> is a [[divisibility sequence|strong divisibility sequence]]. Other divisibility properties are as follows:<ref>For such relations and divisibility properties, see {{harv|Carmichael|1913}}, {{harv|Lehmer|1930}} or {{harv|Ribenboim|1996|loc=2.IV}}.</ref> * If ''n'' is an [[parity (mathematics)|odd]] multiple of ''m'', then <math>V_m</math> divides <math>V_n</math>. * Let ''N'' be an integer [[relatively prime]] to 2''Q''. If the smallest positive integer ''r'' for which ''N'' divides <math>U_r</math> exists, then the set of ''n'' for which ''N'' divides <math>U_n</math> is exactly the set of multiples of ''r''. * If ''P'' and ''Q'' are [[parity (mathematics)|even]], then <math>U_n, V_n</math> are always even except <math>U_1</math>. * If ''P'' is odd and ''Q'' is even, then <math>U_n, V_n</math> are always odd for every <math>n > 0</math>. * If ''P'' is even and ''Q'' is odd, then the [[parity (mathematics)|parity]] of <math>U_n</math> is the same as ''n'' and <math>V_n</math> is always even. * If ''P'' and ''Q'' are odd, then <math>U_n, V_n</math> are even if and only if ''n'' is a multiple of 3. * If ''p'' is an odd prime, then <math>U_p\equiv\left(\tfrac{D}{p}\right), V_p\equiv P\pmod{p}</math> (see [[Legendre symbol]]). * If ''p'' is an odd prime which divides ''P'' and ''Q'', then ''p'' divides <math>U_n</math> for every <math>n>1</math>. * If ''p'' is an odd prime which divides ''P'' but not ''Q'', then ''p'' divides <math>U_n</math> if and only if ''n'' is even. * If ''p'' is an odd prime which divides ''Q'' but not ''P'', then ''p'' never divides <math>U_n</math> for any <math>n > 0</math>. * If ''p'' is an odd prime which divides ''D'' but not ''PQ'', then ''p'' divides <math>U_n</math> if and only if ''p'' divides ''n''. * If ''p'' is an odd prime which does not divide ''PQD'', then ''p'' divides <math>U_l</math>, where <math>l=p-\left(\tfrac{D}{p}\right)</math>. The last fact generalizes [[Fermat's little theorem]]. These facts are used in the [[Lucas–Lehmer primality test]]. Like Fermat's little theorem, the [[converse (logic)|converse]] of the last fact holds often, but not always; there exist [[composite number]]s ''n'' relatively prime to ''D'' and dividing <math>U_l</math>, where <math>l=n-\left(\tfrac{D}{n}\right)</math>. Such composite numbers are called [[Lucas pseudoprime]]s. A [[prime factor]] of a term in a Lucas sequence which does not divide any earlier term in the sequence is called '''primitive'''. [[Carmichael's theorem]] states that all but finitely many of the terms in a Lucas sequence have a primitive prime factor.<ref name=Yabuta>{{cite journal |last1=Yabuta |first1=M |title=A simple proof of Carmichael's theorem on primitive divisors |journal=Fibonacci Quarterly |date=2001 |volume=39 |issue=5 |pages=439–443 |doi=10.1080/00150517.2001.12428701 |url=http://www.fq.math.ca/Scanned/39-5/yabuta.pdf |access-date=4 October 2018}}</ref> Indeed, [[Robert Daniel Carmichael|Carmichael]] (1913) showed that if ''D'' is positive and ''n'' is not 1, 2 or 6, then <math>U_n</math> has a primitive prime factor. In the case ''D'' is negative, a deep result of Bilu, Hanrot, Voutier and Mignotte<ref>{{cite journal | first1=Yuri | last1=Bilu | first2=Guillaume | last2=Hanrot | first3=Paul M. | last3=Voutier | first4=Maurice | last4=Mignotte | title=Existence of primitive divisors of Lucas and Lehmer numbers | journal=J. Reine Angew. Math. | year=2001 | volume=2001 | issue=539 | pages=75–122 | mr=1863855 | doi=10.1515/crll.2001.080 | s2cid=122969549 | url=https://hal.inria.fr/inria-00072867/file/RR-3792.pdf }} </ref> shows that if ''n'' > 30, then <math>U_n</math> has a primitive prime factor and determines all cases <math>U_n</math> has no primitive prime factor. == Specific names == The Lucas sequences for some values of ''P'' and ''Q'' have specific names: :{{math|''U<sub>n</sub>''(1, −1)}} : [[Fibonacci number]]s :{{math|''V<sub>n</sub>''(1, −1)}} : [[Lucas number]]s :{{math|''U<sub>n</sub>''(2, −1)}} : [[Pell number]]s :{{math|''V<sub>n</sub>''(2, −1)}} : [[Pell–Lucas numbers]] (companion Pell numbers) :{{math|''U<sub>n</sub>''(1, −2)}} : [[Jacobsthal number]]s :{{math|''V<sub>n</sub>''(1, −2)}} : [[Jacobsthal–Lucas numbers]] :{{math|''U<sub>n</sub>''(3, 2)}} : [[Mersenne number]]s 2<sup>''n''</sup> − 1 :{{math|''V<sub>n</sub>''(3, 2)}} : Numbers of the form 2<sup>''n''</sup> + 1, which include the [[Fermat number]]s<ref name=Yabuta/> :{{math|''U<sub>n</sub>''(6, 1)}} : The square roots of the [[square triangular number]]s. :{{math|''U<sub>n</sub>''(''x'', −1)}} : [[Fibonacci polynomials]] :{{math|''V<sub>n</sub>''(''x'', −1)}} : [[Lucas polynomials]] :{{math|''U<sub>n</sub>''(2''x'', 1)}} : [[Chebyshev polynomials]] of second kind :{{math|''V<sub>n</sub>''(2''x'', 1)}} : [[Chebyshev polynomials]] of first kind multiplied by 2 :{{math|''U<sub>n</sub>''(''x''+1, ''x'')}} : [[Repunit]]s in base ''x'' :{{math|''V<sub>n</sub>''(''x''+1, ''x'')}} : ''x<sup>n</sup>'' + 1 Some Lucas sequences have entries in the [[On-Line Encyclopedia of Integer Sequences]]: :{|class="wikitable" style="background: #fff" |- !<math>P\,</math>!!<math>Q\, </math>!!<math>U_n(P,Q)\, </math>!! <math>V_n(P,Q)\,</math> |- | −1 || 3 || {{OEIS2C|A214733}} |- | 1 || −1 || {{OEIS2C|A000045}} || {{OEIS2C|A000032}} |- | 1 || 1 || {{OEIS2C|A128834}} || {{OEIS2C|A087204}} |- | 1 || 2 || {{OEIS2C|A107920}} || {{OEIS2C|A002249}} |- | 2 || −1 || {{OEIS2C|A000129}} || {{OEIS2C|A002203}} |- | 2 || 1 || {{OEIS2C|A001477}} || {{OEIS2C|A007395}} |- | 2 || 2 || {{OEIS2C|A009545}} |- | 2 || 3 || {{OEIS2C|A088137}} |- | 2 || 4 || {{OEIS2C|A088138}} |- | 2 || 5 || {{OEIS2C|A045873}} |- | 3 || −5 || {{OEIS2C|A015523}} || {{OEIS2C|A072263}} |- | 3 || −4 || {{OEIS2C|A015521}} || {{OEIS2C|A201455}} |- | 3 || −3 || {{OEIS2C|A030195}} || {{OEIS2C|A172012}} |- | 3 || −2 || {{OEIS2C|A007482}} || {{OEIS2C|A206776}} |- | 3 || −1 || {{OEIS2C|A006190}} || {{OEIS2C|A006497}} |- | 3 || 1 || {{OEIS2C|A001906}} || {{OEIS2C|A005248}} |- | 3 || 2 || {{OEIS2C|A000225}} || {{OEIS2C|A000051}} |- | 3 || 5 || {{OEIS2C|A190959}} |- | 4 || −3 || {{OEIS2C|A015530}} || {{OEIS2C|A080042}} |- | 4 || −2 || {{OEIS2C|A090017}} |- | 4 || −1 || {{OEIS2C|A001076}} || {{OEIS2C|A014448}} |- | 4 || 1 || {{OEIS2C|A001353}} || {{OEIS2C|A003500}} |- | 4 || 2 || {{OEIS2C|A007070}} || {{OEIS2C|A056236}} |- | 4 || 3 || {{OEIS2C|A003462}} || {{OEIS2C|A034472}} |- | 4 || 4 || {{OEIS2C|A001787}} |- | 5 || −3 || {{OEIS2C|A015536}} |- | 5 || −2 || {{OEIS2C|A015535}} |- | 5 || −1 || {{OEIS2C|A052918}} || {{OEIS2C|A087130}} |- | 5 || 1 || {{OEIS2C|A004254}} || {{OEIS2C|A003501}} |- | 5 || 4 ||{{OEIS2C|A002450}} || {{OEIS2C|A052539}} |- | 6 || 1 ||{{OEIS2C|A001109}} || {{OEIS2C|A003499}} |} ==Applications== * Lucas sequences are used in probabilistic [[Lucas pseudoprime]] tests, which are part of the commonly used [[Baillie–PSW primality test]]. * Lucas sequences are used in some primality proof methods, including the [[Lucas–Lehmer–Riesel test]], and the N+1 and hybrid N−1/N+1 methods such as those in Brillhart-Lehmer-Selfridge 1975.<ref name="BLS75">{{ cite journal|author=John Brillhart|author2=Derrick Henry Lehmer|author3-link=John Selfridge|author3=John Selfridge|title=New Primality Criteria and Factorizations of 2<sup>m</sup> ± 1|journal=Mathematics of Computation |volume=29|number=130|date=April 1975|pages=620–647|jstor=2005583|doi=10.1090/S0025-5718-1975-0384673-1|author-link=John Brillhart|author2-link=Derrick Henry Lehmer|doi-access=free}}</ref> * LUC is a [[public-key cryptosystem]] based on Lucas sequences<ref>{{cite journal |author1=P. J. Smith |author2=M. J. J. Lennon |title=LUC: A new public key system |journal=Proceedings of the Ninth IFIP Int. Symp. On Computer Security |year=1993 |pages=103–117 |citeseerx=10.1.1.32.1835 }}</ref> that implements the analogs of [[ElGamal]] (LUCELG), [[Diffie–Hellman]] (LUCDIF), and [[RSA (algorithm)|RSA]] (LUCRSA). The encryption of the message in LUC is computed as a term of certain Lucas sequence, instead of using [[modular exponentiation]] as in RSA or Diffie–Hellman. However, a paper by Bleichenbacher et al.<ref>{{cite book |author1=D. Bleichenbacher |author2=W. Bosma |author3=A. K. Lenstra |title=Advances in Cryptology — CRYPT0' 95 |chapter=Some Remarks on Lucas-Based Cryptosystems |series=Lecture Notes in Computer Science |volume=963 |year=1995 |pages=386–396 |doi=10.1007/3-540-44750-4_31 |isbn=978-3-540-60221-7 |chapter-url=http://www.math.ru.nl/~bosma/pubs/CRYPTO95.pdf|doi-access=free }}</ref> shows that many of the supposed security advantages of LUC over cryptosystems based on modular exponentiation are either not present, or not as substantial as claimed. == Software == Sagemath implements <math>U_n</math> and <math>V_n</math> as <code>lucas_number1()</code> and <code>lucas_number2()</code>, respectively.<ref>{{Cite web |title=Combinatorial Functions - Combinatorics |url=https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/combinat.html |access-date=2023-07-13 |website=doc.sagemath.org}}</ref> ==See also== * [[Lucas pseudoprime]] * [[Frobenius pseudoprime]] * [[Somer–Lucas pseudoprime]] ==Notes== {{reflist}} ==References== <!--These appear to be in chronological order, please maintain.--> *{{citation | last = Carmichael | first = R. D. | author-link = Robert Daniel Carmichael | doi = 10.2307/1967797 | issue = 1/4 | journal = Annals of Mathematics | pages = 30–70 | title = On the numerical factors of the arithmetic forms α<sup>''n''</sup>±β<sup>''n''</sup> | volume = 15 | year = 1913 | jstor = 1967797 }} * {{cite journal| first1=D. H. | last1=Lehmer |title=An extended theory of Lucas' functions |journal=Annals of Mathematics |year=1930 |volume=31 | number=3 |jstor=1968235 |pages=419–448 |bibcode=1930AnMat..31..419L | doi=10.2307/1968235 }} * {{cite journal| first1=Morgan | last1=Ward |title=Prime divisors of second order recurring sequences |journal = Duke Math. J. | year=1954 | volume=21 | number=4 |pages=607–614 | mr=0064073 |doi=10.1215/S0012-7094-54-02163-8 | hdl=10338.dmlcz/137477 | hdl-access=free}} * {{cite journal|first1=Lawrence | last1=Somer |title=The divisibility properties of primary Lucas Recurrences with respect to primes |year=1980 | journal=Fibonacci Quarterly | pages=316–334 | volume=18 | issue=4 | doi=10.1080/00150517.1980.12430140 | url=http://www.fq.math.ca/Scanned/18-4/somer.pdf }} * {{cite journal|first1=J. C. | last1=Lagarias |journal=Pac. J. Math. | title=The set of primes dividing Lucas Numbers has density 2/3 |year=1985 | volume=118 | number=2 | pages=449–461 | mr=789184 | doi=10.2140/pjm.1985.118.449 | citeseerx=10.1.1.174.660 }} * {{cite book | title=Prime Numbers and Computer Methods for Factorization | edition=2nd | author=Hans Riesel | author-link=Hans Riesel | series=Progress in Mathematics | volume=126 | publisher=Birkhäuser | year=1994 | isbn=0-8176-3743-5 | pages=107–121 }} * {{ cite journal|first1=Paulo | last1=Ribenboim | first2=Wayne L. |last2=McDaniel |title=The square terms in Lucas Sequences | journal=J. Number Theory |year=1996 | volume=58 | number=1 | pages=104–123 | doi=10.1006/jnth.1996.0068 | doi-access=free }} * {{cite journal | first1=M. | last1=Joye | first2=J.-J. | last2=Quisquater | title=Efficient computation of full Lucas sequences | journal=Electronics Letters | year=1996 | volume=32 | number=6 | pages=537–538 | url=http://www.joye.site88.net/papers/JQ96lucas.pdf | doi=10.1049/el:19960359 | bibcode=1996ElL....32..537J | url-status=dead | archive-url=https://web.archive.org/web/20150202074230/http://www.joye.site88.net/papers/JQ96lucas.pdf | archive-date=2015-02-02 }} * {{cite book |first= Paulo |last= Ribenboim |title=The New Book of Prime Number Records | publisher=[[Springer-Verlag]], New York | edition=eBook | isbn=978-1-4612-0759-7 | doi=10.1007/978-1-4612-0759-7 | year=1996}} * {{cite book | first=Paulo | last=Ribenboim | author-link=Paulo Ribenboim | year=2000 | title=My Numbers, My Friends: Popular Lectures on Number Theory | publisher=[[Springer-Verlag]] | location=New York | isbn=0-387-98911-0 | pages=1–50 }} * {{cite journal | first1=Florian | last1=Luca |title=Perfect Fibonacci and Lucas numbers | year=2000 |journal = Rend. Circ Matem. Palermo |doi=10.1007/BF02904236 | volume=49 | number=2 | pages=313–318 | s2cid=121789033 }} * {{cite journal | last = Yabuta | first = M. | journal = Fibonacci Quarterly | pages = 439–443 | title = A simple proof of Carmichael's theorem on primitive divisors | url = http://www.fq.math.ca/Scanned/39-5/yabuta.pdf | volume = 39 | year = 2001 | issue = 5 | doi = 10.1080/00150517.2001.12428701 }} *{{cite book | title = Proofs that Really Count: The Art of Combinatorial Proof | first1 = Arthur T. | last1 = Benjamin | author1-link = Arthur T. Benjamin | first2 = Jennifer J. | last2 = Quinn | author2-link = Jennifer Quinn | page = [https://archive.org/details/proofsthatreally0000benj/page/35 35] | publisher = [[Mathematical Association of America]] | series = Dolciani Mathematical Expositions | volume = 27 | year = 2003 | isbn = 978-0-88385-333-7 | title-link = Proofs That Really Count }} * [https://www.encyclopediaofmath.org/index.php/Lucas_sequence ''Lucas sequence''] at [[Encyclopedia of Mathematics]]. * {{MathWorld | urlname=LucasSequence | title=Lucas Sequence}} * {{cite web| url = http://weidai.com/lucas.html|author=Wei Dai|title= Lucas Sequences in Cryptography|author-link=Wei Dai}} [[Category:Recurrence relations]] [[Category:Integer sequences]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Distinguish
(
edit
)
Template:Harv
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:OEIS2C
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)