Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mandelstam variables
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Variables used in scattering processes}} {{for|other articles using the same surname|Mandelstam}} [[Image:Mandelstam.svg|right|thumb|220px|In this diagram, two particles come in with momenta p<sub>1</sub> and p<sub>2</sub>, they interact in some fashion, and then two particles with different momentum (p<sub>3</sub> and p<sub>4</sub>) leave.]] In [[theoretical physics]], the '''Mandelstam variables''' are numerical quantities that encode the [[energy]], [[momentum]], and angles of particles in a scattering process in a [[Lorentz symmetry|Lorentz-invariant]] fashion. They are used for scattering processes of two particles to two particles. The Mandelstam variables were first introduced by physicist [[Stanley Mandelstam]] in 1958. If the [[Minkowski metric]] is chosen to be <math>\mathrm{diag}(1, -1,-1,-1)</math>, the Mandelstam variables <math>s,t,u</math> are then defined by :*<math>s=(p_1+p_2)^2 c^2 =(p_3+p_4)^2 c^2</math> :*<math>t=(p_1-p_3)^2 c^2 =(p_4-p_2)^2 c^2</math> :*<math>u=(p_1-p_4)^2 c^2 =(p_3-p_2)^2 c^2</math>, where ''p''<sub>1</sub> and ''p''<sub>2</sub> are the [[four-momentum|four-momenta]] of the incoming particles and ''p''<sub>3</sub> and ''p''<sub>4</sub> are the four-momenta of the outgoing particles. <math>s</math> is also known as the square of the center-of-mass energy ([[invariant mass]]) and <math>t</math> as the square of the [[four-momentum]] transfer. ==Feynman diagrams== The letters ''s,t,u'' are also used in the terms '''s-channel''' (timelike channel), '''t-channel''', and '''u-channel''' (both spacelike channels). These channels represent different [[Feynman diagram]]s or different possible scattering events where the interaction involves the exchange of an intermediate particle whose squared four-momentum equals ''s,t,u'', respectively. ::{|cellpadding="10" |[[Image:S-channel.svg|150px]] |[[Image:T-channel.svg|150px]] |[[Image:U-channel.svg|150px]] |- |align="center"|'''s-channel''' |align="center"|'''t-channel''' |align="center"|'''u-channel''' |} For example, the s-channel corresponds to the particles 1,2 joining into an intermediate particle that eventually splits into 3,4: {{citation needed span|the s-channel is the only way that [[resonance (quantum field theory)|resonances]] and new [[unstable particle]]s may be discovered provided their lifetimes are long enough that they are directly detectable.|date=July 2014|reason=See 's-channel discovery' discussion on talk page}} The t-channel represents the process in which the particle 1 emits the intermediate particle and becomes the final particle 3, while the particle 2 absorbs the intermediate particle and becomes 4. The u-channel is the t-channel with the role of the particles 3,4 interchanged. When evaluating a Feynman amplitude one often finds scalar products of the external four momenta. One can use the Mandelstam variables to simplify these: <math>\left(p_1c\right)\cdot\left(p_2c\right) = \frac{1}{2}\left(s - \left(m_1c^2\right)^2 - \left(m_2c^2\right)^2\right)</math> <math>\left(p_1c\right)\cdot\left(p_3c\right) = \frac{1}{2}\left(\left(m_1c^2\right)^2 + \left(m_3c^2\right)^2 - t\right)</math> <math>\left(p_1c\right)\cdot\left(p_4c\right) = \frac{1}{2}\left(\left(m_1c^2\right)^2 + \left(m_4c^2\right)^2 - u\right)</math> Where <math>m_i</math> is the mass of the particle with corresponding momentum <math>p_i</math>. ==Sum== Note that :<math>s + t + u = \left(m_1c^2\right)^2 + \left(m_2c^2\right)^2 + \left(m_3c^2\right)^2 + \left(m_4c^2\right)^2</math> where ''m''<sub>''i''</sub> is the mass of particle ''i''.<ref>{{cite book |last=Griffiths |first=David |author-link=David J. Griffiths |year=2008 |title=Introduction to Elementary Particles |edition=2nd |publisher=[[Wiley-VCH]] |isbn=978-3-527-40601-2 |page=113}}</ref> {{Collapse top|title=Proof|collapse=no}} To prove this, we need to use two facts: :*The square of a particle's four momentum is the square of its mass, ::<math>p_i^2 = \left(m_ic\right)^2 \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (1)</math> :*And conservation of four-momentum, ::<math>p_1 + p_2 = p_3 + p_4</math> ::<math>p_1 = -p_2 + p_3 + p_4 \quad \quad \quad \quad \quad \quad \,\, (2)</math> So, to begin, ::<math>s /c^2 =(p_1+p_2)^2 =p_1^2 + p_2^2 + 2p_1 \cdot p_2</math> ::<math>t /c^2 =(p_1-p_3)^2=p_1^2 + p_3^2 - 2p_1 \cdot p_3</math> ::<math>u /c^2 =(p_1-p_4)^2=p_1^2 + p_4^2 - 2p_1 \cdot p_4</math> Then adding the three while inserting squared masses leads to, ::<math>(s+t+u)/c^2=\left(m_1c\right)^2 + \left(m_2c\right)^2 + \left(m_3c\right)^2 + \left(m_4c\right)^2 + 2 p_1^2 + 2p_1 \cdot p_2 - 2p_1 \cdot p_3 - 2p_1 \cdot p_4</math> Then note that the last four terms add up to zero using conservation of four-momentum, ::<math>2 p_1^2 + 2p_1 \cdot p_2 - 2p_1 \cdot p_3 - 2p_1 \cdot p_4 = 2p_1 \cdot (p_1 + p_2 - p_3 - p_4) = 0</math> So finally, :<math>(s+t+u)/c^2 = \left(m_1c\right)^2 + \left(m_2c\right)^2 + \left(m_3c\right)^2 + \left(m_4c\right)^2</math>. {{Collapse bottom|}} ==Relativistic limit== In the relativistic limit, the momentum (speed) is large, so using the [[relativistic energy-momentum equation]], the energy becomes essentially the momentum norm (e.g. <math>E^2= \mathbf{p} \cdot \mathbf{p} + {m_0}^2</math> becomes <math>E^2 \approx \mathbf{p} \cdot \mathbf{p}</math> ). The rest mass can also be neglected. So for example, ::<math>s/c^2=(p_1+p_2)^2=p_1^2+p_2^2+2 p_1 \cdot p_2 \approx 2 p_1 \cdot p_2</math> because <math>p_1^2 = \left(m_1c\right)^2</math> and <math>p_2^2 = \left(m_2c\right)^2</math>. Thus, ::{| |align="right"|<math>s/c^2 \approx</math> |align="right"|<math>2 p_1 \cdot p_2 \approx</math> |align="right"|<math>2 p_3 \cdot p_4</math> |- |align="right"|<math>t/c^2 \approx</math> |<math>-2 p_1 \cdot p_3 \approx</math> |<math>-2 p_2 \cdot p_4</math> |- |align="right"|<math>u/c^2 \approx</math> |<math>-2 p_1 \cdot p_4 \approx</math> |<math>-2 p_3 \cdot p_2</math> |} ==See also== *[[Feynman diagrams]] *[[Bhabha scattering]] *[[Møller scattering]] *[[Compton scattering]] ==References== {{Reflist}} *{{cite journal |last=Mandelstam |first=S. |authorlink=Stanley Mandelstam |year=1958 |title=Determination of the Pion-Nucleon Scattering Amplitude from Dispersion Relations and Unitarity |journal=[[Physical Review]] |doi=10.1103/PhysRev.112.1344 |bibcode=1958PhRv..112.1344M |volume=112 |issue=4 |pages=1344 |url=http://dbserv.ihep.su/hist/owa/hw.part2?s_c=MANDELSTAM+1958 |url-status=dead |archive-url=https://web.archive.org/web/20000528212400/http://dbserv.ihep.su/hist/owa/hw.part2?s_c=MANDELSTAM+1958 |archive-date=2000-05-28|url-access=subscription }} *{{cite book |last1=Halzen |first1=Francis |authorlink1=Francis Halzen |last2=Martin |first2=Alan |authorlink2=Alan Martin (physicist) |year=1984 |title=Quarks & Leptons: An Introductory Course in Modern Particle Physics |publisher=[[John Wiley & Sons]] |isbn=0-471-88741-2 |url=https://archive.org/details/quarksleptonsint0000halz |url-access=registration}} *{{cite book |last=Perkins |first=Donald H. |year=2000 |title=Introduction to High Energy Physics |edition=4th |publisher=[[Cambridge University Press]] |isbn=0-521-62196-8}} {{DEFAULTSORT:Mandelstam Variables}} [[Category:Kinematics (particle physics)]] [[Category:Scattering]] [[Category:Quantum field theory]] [[Category:Eponyms in physics]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation needed span
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Collapse bottom
(
edit
)
Template:Collapse top
(
edit
)
Template:For
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)