Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mathieu group
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Five sporadic simple groups}} {{Group theory sidebar |Finite}} In [[group theory]], a topic in [[abstract algebra]], the '''Mathieu groups''' are the five [[sporadic simple group]]s [[Mathieu group M11|''M''<sub>11</sub>]], [[Mathieu group M12|''M''<sub>12</sub>]], [[Mathieu group M22|''M''<sub>22</sub>]], [[Mathieu group M23|''M''<sub>23</sub>]] and [[Mathieu group M24|''M''<sub>24</sub>]] introduced by {{harvs|txt |authorlink=Émile Léonard Mathieu |last=Mathieu |year1=1861 |year2=1873}}. They are multiply transitive [[permutation group]]s on 11, 12, 22, 23 or 24 objects. They are the first sporadic groups to be discovered. Sometimes the notation ''M''<sub>8</sub>, ''M''<sub>9</sub>, ''M''<sub>10</sub>, ''M''<sub>20</sub>, and ''M''<sub>21</sub> is used for related groups (which act on sets of 8, 9, 10, 20, and 21 points, respectively), namely the stabilizers of points in the larger groups. While these are not sporadic simple groups, they are subgroups of the larger groups and can be used to construct the larger ones. [[John Horton Conway|John Conway]] has shown that one can also extend this sequence up, obtaining the [[Mathieu groupoid |Mathieu groupoid ''M''<sub>13</sub>]] acting on 13 points. ''M''<sub>21</sub> is simple, but is not a sporadic group, being isomorphic to [[Projective special linear group|PSL]](3,4). == History == {{harvtxt|Mathieu|1861|loc=p.271}} introduced the group ''M''<sub>12</sub> as part of an investigation of multiply transitive permutation groups, and briefly mentioned (on page 274) the group ''M''<sub>24</sub>, giving its order. In {{harvtxt|Mathieu|1873}} he gave further details, including explicit [[Generating set of a group|generating sets]] for his groups, but it was not easy to see from his arguments that the groups generated are not just [[alternating group]]s, and for several years the existence of his groups was controversial. {{harvtxt|Miller|1898}} even published a paper mistakenly claiming to prove that ''M''<sub>24</sub> does not exist, though shortly afterwards in {{harv|Miller|1900}} he pointed out that his proof was wrong, and gave a proof that the Mathieu groups are simple. {{Harvs|txt|authorlink=Robert Daniel Carmichael|last=Carmichael|year=1931}} and later {{harvs|txt|last=Witt|year1=1938a|year2=1938b}} finally removed the doubts about the existence of these groups, by constructing them as successive transitive extensions of permutation groups, as well as automorphism groups of [[Steiner system]]s. After the Mathieu groups, no new sporadic groups were found until 1965, when the group [[Janko group J1|J<sub>1</sub>]] was discovered. == Multiply transitive groups == Mathieu was interested in finding '''multiply transitive''' permutation groups, which will now be defined. For a natural number ''k'', a permutation group ''G'' acting on ''n'' points is ''' ''k''-transitive''' if, given two sets of points ''a''<sub>1</sub>, ... ''a''<sub>''k''</sub> and ''b''<sub>1</sub>, ... ''b''<sub>''k''</sub> with the property that all the ''a''<sub>''i''</sub> are distinct and all the ''b''<sub>''i''</sub> are distinct, there is a group element ''g'' in ''G'' which maps ''a''<sub>''i''</sub> to ''b''<sub>''i''</sub> for each ''i'' between 1 and ''k''. Such a group is called '''sharply ''k''-transitive''' if the element ''g'' is unique (i.e. the action on ''k''-tuples is [[Group action (mathematics)#Remarkable properties of actions|regular]], rather than just transitive). ''M''<sub>24</sub> is 5-transitive, and ''M''<sub>12</sub> is sharply 5-transitive, with the other Mathieu groups (simple or not) being the subgroups corresponding to stabilizers of ''m'' points, and accordingly of lower transitivity (''M''<sub>23</sub> is 4-transitive, etc.). These are the only two 5-transitive groups that are neither [[symmetric group]]s nor [[alternating group]]s {{harv|Cameron|1992|loc= p. 139}}. The only 4-transitive groups are the [[symmetric group]]s ''S''<sub>''k''</sub> for ''k'' at least 4, the [[alternating group]]s ''A''<sub>''k''</sub> for ''k'' at least 6, and the Mathieu groups [[Mathieu group M24|''M''<sub>24</sub>]], [[Mathieu group M23|''M''<sub>23</sub>]], [[Mathieu group M12|''M''<sub>12</sub>]], and [[Mathieu group M11|''M''<sub>11</sub>]]. {{harv|Cameron|1999|loc= p. 110}} The full proof requires the [[classification of finite simple groups]], but some special cases have been known for much longer. It is [[Jordan's theorem (symmetric group)|a classical result of Jordan]] that the [[symmetric group|symmetric]] and [[alternating group]]s (of degree ''k'' and ''k'' + 2 respectively), and ''M''<sub>12</sub> and ''M''<sub>11</sub> are the only ''sharply'' ''k''-transitive permutation groups for ''k'' at least 4. Important examples of multiply transitive groups are the [[2-transitive group]]s and the [[Zassenhaus group]]s. The Zassenhaus groups notably include the [[projective general linear group]] of a projective line over a finite field, PGL(2,'''F'''<sub>''q''</sub>), which is sharply 3-transitive (see [[cross ratio]]) on <math>q+1</math> elements. === Order and transitivity table === {| class="wikitable" ! Group ! Order ! Order (product) ! Factorised order ! Transitivity ! Simple ! Sporadic |- | ''M''<sub>24</sub> | 244823040 | 3·16·20·21·22·23·24 | 2<sup>10</sup>·3<sup>3</sup>·5·7·11·23 | 5-transitive | yes | sporadic |- | ''M''<sub>23</sub> | 10200960 | 3·16·20·21·22·23 | 2<sup>7</sup>·3<sup>2</sup>·5·7·11·23 | 4-transitive | yes | sporadic |- | ''M''<sub>22</sub> | 443520 | 3·16·20·21·22 | 2<sup>7</sup>·3<sup>2</sup>·5·7·11 | 3-transitive | yes | sporadic |- | ''M''<sub>21</sub> | 20160 | 3·16·20·21 | 2<sup>6</sup>·3<sup>2</sup>·5·7 | 2-transitive | yes | ≈ [[projective special linear group#Finite fields|PSL]]<sub>3</sub>(4) |- | ''M''<sub>20</sub> | 960 | 3·16·20 | 2<sup>6</sup>·3·5 | 1-transitive | no | ≈2<sup>4</sup>:A<sub>5</sub> |- | colspan = "7" | |- | ''M''<sub>12</sub> | 95040 | 8·9·10·11·12 | 2<sup>6</sup>·3<sup>3</sup>·5·11 | sharply 5-transitive | yes | sporadic |- | ''M''<sub>11</sub> | 7920 | 8·9·10·11 | 2<sup>4</sup>·3<sup>2</sup>·5·11 | sharply 4-transitive | yes | sporadic |- | ''M''<sub>10</sub> | 720 | 8·9·10 | 2<sup>4</sup>·3<sup>2</sup>·5 | sharply 3-transitive | [[almost simple group|almost]] | ''M''<sub>10</sub>' ≈ [[Alternating group|Alt]]<sub>6</sub> |- | ''M''<sub>9</sub> | 72 | 8·9 | 2<sup>3</sup>·3<sup>2</sup> | sharply 2-transitive | no | ≈ [[projective special unitary group#Finite fields|PSU]]<sub>3</sub>(2) |- | ''M''<sub>8</sub> | 8 | 8 | 2<sup>3</sup> | sharply 1-transitive (regular) | no | ≈ [[quaternion group|Q]] |} == Constructions of the Mathieu groups == The Mathieu groups can be constructed in various ways. ===Permutation groups=== ''M''<sub>12</sub> has a simple subgroup of order 660, a maximal subgroup. That subgroup is isomorphic to the [[projective special linear group]] PSL<sub>2</sub>('''F'''<sub>11</sub>) over the [[finite field|field of 11 elements]]. With −1 written as '''a''' and infinity as '''b''', two standard generators are (0123456789a) and (0b)(1a)(25)(37)(48)(69). A third generator giving ''M''<sub>12</sub> sends an element ''x'' of '''F'''<sub>11</sub> to 4''x''<sup>2</sup> − 3''x''<sup>7</sup>; as a permutation that is (26a7)(3945). This group turns out not to be isomorphic to any member of the infinite families of finite simple groups and is called sporadic. ''M''<sub>11</sub> is the stabilizer of a point in ''M''<sub>12</sub>, and turns out also to be a sporadic simple group. ''M''<sub>10</sub>, the stabilizer of two points, is not sporadic, but is an [[almost simple group]] whose [[commutator subgroup]] is the [[alternating group]] A<sub>6</sub>. It is thus related to the [[Automorphisms of the symmetric and alternating groups#exceptional outer automorphism|exceptional outer automorphism]] of A<sub>6</sub>. The stabilizer of 3 points is the [[projective special unitary group]] PSU(3,2<sup>2</sup>), which is solvable. The stabilizer of 4 points is the [[quaternion group]]. Likewise, ''M''<sub>24</sub> has a maximal simple subgroup of order 6072 isomorphic to PSL<sub>2</sub>('''F'''<sub>23</sub>). One generator adds 1 to each element of the field (leaving the point ''N'' at infinity fixed), i.e. (0123456789ABCDEFGHIJKLM)(''N''), and the other sends ''x'' to −1/''x'', i.e. (0N)(1M)(2B)(3F)(4H)(59)(6J)(7D)(8K)(AG)(CL)(EI). A third generator giving ''M''<sub>24</sub> sends an element ''x'' of '''F'''<sub>23</sub> to 4''x''<sup>4</sup> − 3''x''<sup>15</sup> (which sends perfect squares via ''x''<sup>4</sup> and non-perfect squares via 7''x''<sup>4</sup>); computation shows that as a permutation this is (2G968)(3CDI4)(7HABM)(EJLKF). The stabilizers of 1 and 2 points, ''M''<sub>23</sub> and ''M''<sub>22</sub>, also turn out to be sporadic simple groups. The stabilizer of 3 points is simple and isomorphic to the [[projective special linear group]] PSL<sub>3</sub>(4). These constructions were cited by {{harvtxt|Carmichael|1956|loc= pp. 151, 164, 263}}. {{harvtxt|Dixon|Mortimer|1996|loc=p.209}} ascribe the permutations to Mathieu. === Automorphism groups of Steiner systems === There exists [[up to]] [[Equivalence relation|equivalence]] a unique ''S''(5,8,24) [[Steiner system]] '''W<sub>24</sub>''' (the [[Witt design]]). The group ''M''<sub>24</sub> is the automorphism group of this Steiner system; that is, the set of permutations which map every block to some other block. The subgroups ''M''<sub>23</sub> and ''M''<sub>22</sub> are defined to be the stabilizers of a single point and two points respectively. Similarly, there exists up to equivalence a unique ''S''(5,6,12) Steiner system '''W<sub>12</sub>''', and the group ''M''<sub>12</sub> is its automorphism group. The subgroup ''M''<sub>11</sub> is the stabilizer of a point. ''W''<sub>12</sub> can be constructed from the [[affine geometry]] on the [[vector space]] {{nowrap|'''F'''<sub>3</sub> × '''F'''<sub>3</sub>}}, an ''S''(2,3,9) system. An alternative construction of ''W''<sub>12</sub> is the "Kitten" of {{Harvtxt|Curtis|1984}}. An introduction to a construction of ''W''<sub>24</sub> via the [[Miracle Octad Generator]] of R. T. Curtis and Conway's analog for ''W''<sub>12</sub>, the miniMOG, can be found in the book by Conway and [[Neil Sloane|Sloane]]. === Automorphism groups on the Golay code === The group ''M''<sub>24</sub> is the [[Mathieu group M24#Automorphism group of the Golay code|permutation automorphism group]] of the [[binary Golay code|extended binary Golay code]] ''W'', i.e., the group of permutations on the 24 coordinates that map ''W'' to itself. All the Mathieu groups can be constructed as groups of permutations on the binary Golay code. ''M''<sub>12</sub> has index 2 in its automorphism group, and ''M''<sub>12</sub>:2 happens to be isomorphic to a subgroup of ''M''<sub>24</sub>. ''M''<sub>12</sub> is the stabilizer of a '''dodecad''', a codeword of 12 1's; ''M''<sub>12</sub>:2 stabilizes a partition into 2 complementary dodecads. There is a natural connection between the Mathieu groups and the larger [[Conway groups]], because the [[Leech lattice]] was constructed on the binary Golay code and in fact both lie in spaces of dimension 24. The Conway groups in turn are found in the [[Monster group]]. [[Robert Griess]] refers to the 20 sporadic groups found in the Monster as the '''Happy Family''', and to the Mathieu groups as the '''first generation'''. ===Dessins d'enfants=== The Mathieu groups can be constructed via [[dessins d'enfants]], with the dessin associated to ''M''<sub>12</sub> suggestively called "Monsieur Mathieu" by {{harvtxt|le Bruyn|2007}}. == References == {{Reflist}} *{{Citation | last1=Cameron | first1=Peter J. | author1-link=Peter Cameron (mathematician) | title=Projective and Polar Spaces | url=https://webspace.maths.qmul.ac.uk/p.j.cameron/pps/pps9.pdf | publisher=University of London, Queen Mary and Westfield College | year=1992 | isbn=978-0-902-48012-4 | s2cid=115302359 }} *{{Citation | last1=Cameron | first1=Peter J. | author1-link=Peter Cameron (mathematician) | title=Permutation Groups | publisher=[[Cambridge University Press]] | series=London Mathematical Society Student Texts | isbn=978-0-521-65378-7 | year=1999 | volume=45 | url-access=registration | url=https://archive.org/details/permutationgroup0000came }} * {{citation|last=Carmichael|first=Robert|author-link=Robert Daniel Carmichael|title=Tactical Configurations of Rank Two|journal=American Journal of Mathematics|volume=53|issue=1|pages=217–240|year=1931|jstor=2370885|doi=10.2307/2370885}} *{{Citation | last1=Carmichael | first1=Robert D. | author1-link=Robert Daniel Carmichael | title=Introduction to the theory of groups of finite order | orig-year=1937 | url=https://books.google.com/books?id=McMgAAAAMAAJ | publisher=[[Dover Publications]] | location=New York | isbn=978-0-486-60300-1 |mr=0075938 | year=1956}} * {{Citation | doi = 10.2307/1996123 | pages = 1–27 | title = On Subgroups of M<sub>24</sub>. I: Stabilizers of Subsets | journal = Transactions of the American Mathematical Society | volume = 167 | date = May 1972a | first = C. | last = Choi | jstor = 1996123 }} * {{Cite journal| doi = 10.2307/1996124| pages = 29–47| title = On Subgroups of M<sub>24</sub>. II: the Maximal Subgroups of M<sub>24</sub>| journal = Transactions of the American Mathematical Society| volume = 167| date = May 1972b | first = C.| last = Choi| jstor = 1996124}} *{{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | editor1-last=Powell | editor1-first=M. B. | editor2-last=Higman | editor2-first=Graham | editor2-link=Graham Higman | title=Finite simple groups | chapter-url=https://books.google.com/books?id=TPPkAAAAIAAJ | publisher=[[Academic Press]] | location=Boston, MA | series=Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969. | isbn=978-0-12-563850-0 |mr=0338152 | year=1971 | chapter=Three lectures on exceptional groups | pages=215–247}} Reprinted in {{harvtxt|Conway|Sloane|1999|loc= 267–298}} *{{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | last2=Parker | first2=Richard A. | author2-link=Richard A. Parker | last3=Norton | first3=Simon P. | author3-link=Simon P. Norton | last4=Curtis | first4=R. T. | last5=Wilson | first5=Robert A. | author5-link=Robert Arnott Wilson | title=Atlas of finite groups | url=https://books.google.com/books?id=38fEMl2-Fp8C | publisher=[[Oxford University Press]] | isbn=978-0-19-853199-9 |mr=827219 | year=1985}} *{{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | last2=Sloane | first2=Neil J. A. | author2-link=Neil Sloane | title=Sphere Packings, Lattices and Groups | url=https://books.google.com/books?id=upYwZ6cQumoC | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=3rd | series=Grundlehren der Mathematischen Wissenschaften | isbn=978-0-387-98585-5 |mr=0920369 | year=1999 | volume=290 | doi=10.1007/978-1-4757-2016-7| url-access=subscription }} *{{Citation | last1=Curtis | first1=R. T. | title=A new combinatorial approach to M<sub>24</sub> | doi=10.1017/S0305004100052075 |mr=0399247 | year=1976 | journal=Mathematical Proceedings of the Cambridge Philosophical Society | issn=0305-0041 | volume=79 | issue=1 | pages=25–42| bibcode=1976MPCPS..79...25C }} *{{Citation | last1=Curtis | first1=R. T. | title=The maximal subgroups of M<sub>24</sub> | doi=10.1017/S0305004100053251 |mr=0439926 | year=1977 | journal=Mathematical Proceedings of the Cambridge Philosophical Society | issn=0305-0041 | volume=81 | issue=2 | pages=185–192| bibcode=1977MPCPS..81..185C }} *{{Citation | last1=Curtis | first1=R. T. | editor1-last=Atkinson | editor1-first=Michael D. | title=Computational group theory. Proceedings of the London Mathematical Society symposium held in Durham, July 30–August 9, 1982. | chapter-url=https://books.google.com/books?id=RvvuAAAAMAAJ | publisher=[[Academic Press]] | location=Boston, MA | isbn=978-0-12-066270-8 |mr=760669 | year=1984 | chapter=The Steiner system S(5, 6, 12), the Mathieu group M<sub>12</sub> and the "kitten" | pages=353–358}} * {{Citation |title=The Mathieu groups and their geometries |first=Hans |last=Cuypers |url=http://www.win.tue.nl/~hansc/mathieu.pdf }} *{{Citation | last1=Dixon | first1=John D. | last2=Mortimer | first2=Brian | title=Permutation groups | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Graduate Texts in Mathematics | isbn=978-0-387-94599-6 | doi=10.1007/978-1-4612-0731-3 | mr=1409812 | year=1996 | volume=163 | url-access=registration | url=https://archive.org/details/permutationgroup0000dixo }} *{{Citation | last1=Frobenius | first1=Ferdinand Georg | author1-link=Ferdinand Georg Frobenius | title=Über die Charaktere der mehrfach transitiven Gruppen | url=https://books.google.com/books?id=ksNjpwAACAAJ | publisher=Mouton De Gruyter | series=Berline Berichte | isbn=978-3-11-109790-9 | year=1904 | pages=558–571}} *{{Citation | last1=Gill | first1=Nick | last2=Hughes | first2=Sam | title=The character table of a sharply 5-transitive subgroup of the alternating group of degree 12 | year=2019 | doi=10.22108/IJGT.2019.115366.1531 | journal=International Journal of Group Theory| s2cid=119151614 }} *{{Citation | last1=Griess | first1=Robert L. Jr. | author1-link=R. L. Griess | title=Twelve sporadic groups | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-540-62778-4 |mr=1707296 | year=1998 | doi=10.1007/978-3-662-03516-0}} *{{Citation | last1=Hughes | first1=Sam | title=Representation and Character Theory of the Small Mathieu Groups | url=https://nickpgill.github.io/MMath_Sam.Hughes.pdf |year=2018}} * {{Citation | last1=Mathieu | author1-link=Émile Léonard Mathieu | first1=Émile | title=Mémoire sur l'étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables | url=http://gallica.bnf.fr/ark:/12148/bpt6k16405f/f249 | year=1861 | journal=Journal de Mathématiques Pures et Appliquées | volume=6 | pages=241–323}} *{{Citation | last1=Mathieu | author1-link=Émile Léonard Mathieu | first1=Émile | title=Sur la fonction cinq fois transitive de 24 quantités | url=https://gallica.bnf.fr/ark:/12148/bpt6k16417f/f33.item | language=fr | jfm=05.0088.01 | year=1873 | journal=Journal de Mathématiques Pures et Appliquées | volume=18 | pages=25–46 }} *{{Citation | last1=Miller | first1=G. A. | author1-link=George Abram Miller | title=On the supposed five-fold transitive function of 24 elements and 19!/48 values. | url=https://books.google.com/books?id=LMAKAAAAIAAJ&pg=PA187 | year=1898 | journal=[[Messenger of Mathematics]] | volume=27 | pages=187–190}} *{{Citation | last1=Miller | first1=G. A. | author1-link=George Abram Miller | title=Sur plusieurs groupes simples | url=http://www.numdam.org/item?id=BSMF_1900__28__266_0 | year=1900 | journal= Bulletin de la Société Mathématique de France | volume=28 | pages=266–267| doi=10.24033/bsmf.635 | doi-access=free }} *{{Citation | last1=Ronan | first1=Mark | author1-link=Mark Ronan | title=Symmetry and the Monster | publisher=Oxford | isbn=978-0-19-280722-9 | year=2006}} (an introduction for the lay reader, describing the Mathieu groups in a historical context) *{{Citation | last1=Thompson | first1=Thomas M. | title=From error-correcting codes through sphere packings to simple groups | url=https://books.google.com/books?id=ggqxuG31B3cC | publisher=[[Mathematical Association of America]] | series=Carus Mathematical Monographs | isbn=978-0-88385-023-7 |mr=749038 | year=1983 | volume=21}} *{{Citation | last1=Witt | first1=Ernst | author1-link=Ernst Witt | title=über Steinersche Systeme | doi=10.1007/BF02948948 | year=1938a | journal=Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | issn=0025-5858 | volume=12 | pages=265–275| s2cid=123106337 }} *{{Citation | last1=Witt | first1=Ernst | author1-link=Ernst Witt | title=Die 5-fach transitiven Gruppen von Mathieu | doi=10.1007/BF02948947 | year=1938b | journal=[[Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg]] | volume=12 | pages=256–264| s2cid=123658601 }} ==External links== * [http://brauer.maths.qmul.ac.uk/Atlas/v3/group/M10/ ATLAS: Mathieu group ''M''<sub>10</sub>] * [http://brauer.maths.qmul.ac.uk/Atlas/v3/group/M11/ ATLAS: Mathieu group ''M''<sub>11</sub>] * [http://brauer.maths.qmul.ac.uk/Atlas/v3/group/M12/ ATLAS: Mathieu group ''M''<sub>12</sub>] * [http://brauer.maths.qmul.ac.uk/Atlas/v3/group/M20/ ATLAS: Mathieu group ''M''<sub>20</sub>] * [http://brauer.maths.qmul.ac.uk/Atlas/v3/group/M21/ ATLAS: Mathieu group ''M''<sub>21</sub>] * [http://brauer.maths.qmul.ac.uk/Atlas/v3/group/M22/ ATLAS: Mathieu group ''M''<sub>22</sub>] * [http://brauer.maths.qmul.ac.uk/Atlas/v3/group/M23/ ATLAS: Mathieu group ''M''<sub>23</sub>] * [http://brauer.maths.qmul.ac.uk/Atlas/v3/group/M24/ ATLAS: Mathieu group ''M''<sub>24</sub>] *{{citation |last = le Bruyn |first = Lieven |title = Monsieur Mathieu |year = 2007 |url = http://www.neverendingbooks.org/monsieur-mathieu |url-status = live |archive-url = https://web.archive.org/web/20100501212151/http://www.neverendingbooks.org/index.php/monsieur-mathieu.html |archive-date = 2010-05-01 }} * {{citation | first = David A. | last = Richter | url = http://homepages.wmich.edu/~drichter/mathieu.htm | title = How to Make the Mathieu Group ''M''<sub>24</sub> | access-date = 2010-04-15 }} * [http://groupnames.org/index.html#?M9 Mathieu group ''M''<sub>9</sub> on GroupNames] *[http://www.sciam.com/article.cfm?id=puzzles-simple-groups-at-play Scientific American] A set of puzzles based on the mathematics of the Mathieu groups *[https://apps.apple.com/us/app/sporadic-m12/id322438247 Sporadic M12 ] An iPhone app that implements puzzles based on ''M''<sub>12</sub>, presented as one "spin" permutation and a selectable "swap" permutation {{DEFAULTSORT:Mathieu Group}} [[Category:Sporadic groups]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite journal
(
edit
)
Template:Group theory sidebar
(
edit
)
Template:Harv
(
edit
)
Template:Harvs
(
edit
)
Template:Harvtxt
(
edit
)
Template:Nowrap
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)