Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix addition
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
[[File:Matrix addition qtl2.svg|thumb|Illustration of the addition of two matrices.]] {{Use American English|date = January 2019}} {{Short description|Notions of sums for matrices in linear algebra}} In [[mathematics]], '''matrix addition''' is the operation of adding two [[matrix (mathematics)|matrices]] by adding the corresponding entries together. For a [[Vector space|vector]], <math>\vec{v}\!</math>, adding two matrices would have the geometric effect of applying each matrix transformation separately onto <math>\vec{v}\!</math>, then adding the transformed vectors. :<math>\mathbf{A}\vec{v} + \mathbf{B}\vec{v} = (\mathbf{A} + \mathbf{B})\vec{v}\!</math> ==Definition== Two matrices must have an equal number of rows and columns to be added.<ref>Elementary Linear Algebra by Rorres Anton 10e p53</ref> In which case, the sum of two matrices '''A''' and '''B''' will be a matrix which has the same number of rows and columns as '''A''' and '''B'''. The sum of '''A''' and '''B''', denoted {{nowrap|'''A''' + '''B'''}}, is computed by adding corresponding elements of '''A''' and '''B''':{{sfn|Lipschutz|Lipson|2017}}{{sfn|Riley|Hobson|Bence|2006}} :<math>\begin{align} \mathbf{A}+\mathbf{B} & = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \\ \end{bmatrix} \\ & = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\ \end{bmatrix} \\ \end{align}\,\!</math> Or more concisely (assuming that {{nowrap|1='''A''' + '''B''' = '''C'''}}):<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Matrix Addition|url=https://mathworld.wolfram.com/MatrixAddition.html|access-date=2020-09-07|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|title=Finding the Sum and Difference of Two Matrices {{!}} College Algebra|url=https://courses.lumenlearning.com/ivytech-collegealgebra/chapter/finding-the-sum-and-difference-of-two-matrices/|access-date=2020-09-07|website=courses.lumenlearning.com}}</ref> :<math>c_{ij}=a_{ij}+b_{ij}</math> For example: :<math> \begin{bmatrix} 1 & 3 \\ 1 & 0 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 7 & 5 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 \\ 1+7 & 0+5 \\ 1+2 & 2+1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 8 & 5 \\ 3 & 3 \end{bmatrix} </math> Similarly, it is also possible to subtract one matrix from another, as long as they have the same dimensions. The difference of '''A''' and '''B''', denoted {{nowrap|'''A''' − '''B'''}}, is computed by subtracting elements of '''B''' from corresponding elements of '''A''', and has the same dimensions as '''A''' and '''B'''. For example: :<math> \begin{bmatrix} 1 & 3 \\ 1 & 0 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 7 & 5 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1-0 & 3-0 \\ 1-7 & 0-5 \\ 1-2 & 2-1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ -6 & -5 \\ -1 & 1 \end{bmatrix} </math> ==See also== * [[Matrix multiplication]] * [[Vector addition]] * [[Direct sum of matrices]] * [[Kronecker sum]] == Notes == {{reflist|2}} ==References== * {{cite book | last1=Lipschutz | first1=Seymour | last2=Lipson | first2=Marc | title=Schaum's Outline of Linear Algebra | edition=6 | publisher=McGraw-Hill Education | year=2017 | isbn=9781260011449}} * {{cite book | last1=Riley | first1=K.F. | last2=Hobson | first2=M.P. |last3=Bence |first3=S.J. | title=Mathematical methods for physics and engineering | edition=3 | publisher=Cambridge University Press | year=2006 | doi=10.1017/CBO9780511810763 | isbn=978-0-521-86153-3 | url=https://archive.org/details/mathematicalmeth00rile |url-access=registration}} ==External links== * [https://web.archive.org/web/20120514184901/http://www.aps.uoguelph.ca/~lrs/ABMethods/NOTES/CDmatrix.pdf Matrix Algebra and R] [[Category:Linear algebra]] [[Category:Bilinear maps]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Nowrap
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Use American English
(
edit
)