Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix norm
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Norm on a vector space of matrices}} {{For|the general concept|Norm (mathematics)}} {{multiple issues| {{lead too short|date=March 2023}} {{context|date=March 2023}}}} In the field of [[mathematics]], [[vector norm|norms]] are defined for elements within a [[vector space]]. Specifically, when the vector space comprises matrices, such norms are referred to as '''matrix norms'''. Matrix norms differ from vector norms in that they must also interact with matrix multiplication. ==Preliminaries== Given a [[field (mathematics)|field]] <math>\ K\ </math> of either [[real number|real]] or [[complex number]]s (or any complete subset thereof), let <math>\ K^{m \times n}\ </math> be the {{mvar|K}}-[[vector space]] of matrices with <math>m</math> rows and <math>n</math> columns and entries in the field <math>\ K ~.</math> A matrix norm is a [[Norm (mathematics)|norm]] on <math>\ K^{m \times n}~.</math> Norms are often expressed with [[double vertical bar]]s (like so: <math>\ \|A\|\ </math>). Thus, the matrix norm is a [[Function (mathematics)|function]] <math>\ \|\cdot\| : K^{m \times n} \to \R^{0+}\ </math> that must satisfy the following properties:<ref name=":0">{{cite web |last=Weisstein |first=Eric W. |title=Matrix norm |website=mathworld.wolfram.com |url=https://mathworld.wolfram.com/MatrixNorm.html |access-date=2020-08-24 |lang=en }}</ref><ref name=":1">{{Cite web |title=Matrix norms |website=fourier.eng.hmc.edu |url=http://fourier.eng.hmc.edu/e161/lectures/algebra/node12.html | access-date=2020-08-24 }}</ref> For all scalars <math>\ \alpha \in K\ </math> and matrices <math>\ A, B \in K^{m \times n}\ ,</math> * <math> \|A\| \ge 0\ </math> (''positive-valued'') * <math> \|A\| = 0 \iff A=0_{m,n}</math> (''definite'') * <math> \left\| \alpha\ A \right\| = \left| \alpha \right|\ \left\|A\right\|\ </math> (''absolutely homogeneous'') * <math> \| A + B \| \le \| A \| + \| B \|\ </math> (''sub-additive'' or satisfying the ''triangle inequality'') The only feature distinguishing matrices from rearranged vectors is [[matrix multiplication|multiplication]]. Matrix norms are particularly useful if they are also '''sub-multiplicative''':<ref name=":0"/><ref name=":1"/><ref>{{cite journal |last=Malek-Shahmirzadi |first=Massoud |year=1983 |title=A characterization of certain classes of matrix norms |journal=Linear and Multilinear Algebra |volume=13 |issue=2 |pages=97–99 | doi=10.1080/03081088308817508| issn=0308-1087 |lang=en }}</ref> * <math>\ \left\| AB \right\| \le \left\| A \right\| \left\| B \right\|\ </math>{{efn|group=Note| The condition only applies when the product is defined, such as the case of [[Square matrix|square matrices]] (<math>\ m = n\ </math>). More generally, multiplication of the matrices must be possible: <math>\ A \in K^{\ell \times m}\ </math> and <math>\ B \in K^{m \times n} ~;</math> further, the two norms <math>\ \|A\|\ </math> and <math>\ \|B\|\ </math> must either have the same definitions, only differing in the matrix dimensions, or two different types of norms that are none the less "consistent" (see below). }} Every norm on <math>\ K^{n\times n}\ </math> can be rescaled to be sub-multiplicative; in some books, the terminology ''matrix norm'' is reserved for sub-multiplicative norms.<ref>{{cite book |last=Horn |first=Roger A. |year=2012 |title=Matrix analysis |edition=2nd |publisher=Cambridge University Press |location=Cambridge, UK |others=Johnson, Charles R. |isbn=978-1-139-77600-4 |oclc=817236655 |pages=340–341 }}</ref> ==Matrix norms induced by vector norms== {{Main|Operator norm}} Suppose a [[vector norm]] <math>\|\cdot\|_{\alpha}</math> on <math>K^n</math> and a vector norm <math>\|\cdot\|_{\beta}</math> on <math>K^m</math> are given. Any <math>m \times n</math> matrix {{mvar|A}} induces a linear operator from <math>K^n</math> to <math>K^m</math> with respect to the standard basis, and one defines the corresponding ''induced norm'' or ''[[operator norm]]'' or ''subordinate norm'' on the space <math>K^{m \times n}</math> of all <math>m \times n</math> matrices as follows: <math display="block"> \|A\|_{\alpha, \beta} = \sup\{ \|Ax\|_\beta : x \in K^n \text{ such that } \|x\|_\alpha \leq 1 \} </math> where <math> \sup </math> denotes the [[Infimum and supremum|supremum]]. This norm measures how much the mapping induced by <math>A</math> can stretch vectors. Depending on the vector norms <math>\|\cdot\|_{\alpha}</math>, <math>\|\cdot\|_{\beta}</math> used, notation other than <math>\|\cdot\|_{\alpha,\beta}</math> can be used for the operator norm. ===Matrix norms induced by vector ''p''-norms=== If the [[Vector norm#p-norm|''p''-norm for vectors]] (<math>1 \leq p \leq \infty</math>) is used for both spaces <math>K^n</math> and <math>K^m,</math> then the corresponding operator norm is:<ref name=":1" /> <math display="block"> \|A\|_p = \sup \{ \|Ax\|_p : x \in K^n \text{ such that } \|x\|_p \leq 1 \}. </math> These induced norms are different from the [[#"Entry-wise" matrix norms|"entry-wise"]] ''p''-norms and the [[Schatten norm|Schatten ''p''-norms]] for matrices treated below, which are also usually denoted by <math> \|A\|_p .</math> Geometrically speaking, one can imagine a ''p''-norm unit ball <math>V_{p, n} = \{x\in K^n : \|x\|_p \le 1 \}</math> in <math>K^n</math>, then apply the linear map <math>A</math> to the ball. It would end up becoming a distorted convex shape <math>AV_{p, n} \subset K^m</math>, and <math> \|A\|_p </math> measures the longest "radius" of the distorted convex shape. In other words, we must take a ''p''-norm unit ball <math>V_{p, m}</math> in <math>K^m</math>, then multiply it by at least <math> \|A\|_p </math>, in order for it to be large enough to contain <math>AV_{p, n}</math>. ==== ''p'' = 1 or ∞ ==== When <math>\ p = 1\ ,</math> or <math>\ p = \infty\ ,</math> we have simple formulas. :<math display="block"> \|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m \left| a_{ij} \right|\ ,</math> which is simply the maximum absolute column sum of the matrix. <math display="block"> \|A\|_\infty = \max_{1 \leq i \leq m} \sum _{j=1}^n \left| a_{ij} \right|\ ,</math> which is simply the maximum absolute row sum of the matrix. For example, for <math display="block">A = \begin{bmatrix} -3 & 5 & 7 \\ ~~2 & 6 & 4 \\ ~~0 & 2 & 8 \\ \end{bmatrix}\ ,</math> we have that <math display="block">\|A\|_1 = \max\bigl\{\ |{-3}|+2+0\ ,~ 5+6+2\ ,~ 7+4+8\ \bigr\} = \max\bigl\{\ 5\ ,~ 13\ ,~ 19\ \bigr\} = 19\ ,</math> <math display="block">\|A\|_\infty = \max\bigl\{\ |{-3}|+5+7\ ,~ 2+6+4\ ,~ 0+2+8\ \bigr\} = \max\bigl\{\ 15\ ,~ 12\ ,~ 10\ \bigr\} = 15 ~.</math> ==== Spectral norm (''p'' = 2) ==== {{anchor|Spectral norm}} When <math>p = 2</math> (the [[Euclidean norm]] or <math>\ell_2</math>-norm for vectors), the induced matrix norm is the ''spectral norm''. The two values do ''not'' coincide in infinite dimensions — see [[Spectral radius]] for further discussion. The spectral radius should not be confused with the spectral norm. The spectral norm of a matrix <math>A</math> is the largest [[singular value]] of <math>A</math>, i.e., the square root of the largest [[eigenvalue]] of the matrix <math>A^*A,</math> where <math>A^*</math> denotes the [[conjugate transpose]] of <math>A</math>:<ref>Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, §5.2, p.281, Society for Industrial & Applied Mathematics, June 2000.</ref><math display="block"> \|A\|_2 = \sqrt{\lambda_{\max}\left(A^* A\right)} = \sigma_{\max}(A).</math>where <math>\sigma_{\max}(A)</math> represents the largest singular value of matrix <math>A.</math> There are further properties: * <math display="inline">\|A \|_2 = \sup\{x^* A y : x \in K^m, y \in K^n \text{ with }\|x\|_2 = \|y\|_2 = 1\}.</math> Proved by the [[Cauchy–Schwarz inequality]]. * <math display="inline"> \| A^* A\|_2 = \| A A^* \|_2 = \|A\|_2^2</math>. Proven by [[singular value decomposition]] (SVD) on <math>A</math>. * <math display="inline"> \|A\| _2 = \sigma_{\mathrm{max}}(A) \leq \|A\|_{\rm F} = \sqrt{\sum_i \sigma_{i}(A)^2}</math>, where <math>\|A\|_\textrm{F}</math> is the [[#Frobenius norm|Frobenius norm]]. Equality holds if and only if the matrix <math>A</math> is a rank-one matrix or a zero matrix. * Conversely, <math>\|A\|_\textrm{F} \leq \min(m,n)^{1/2}\|A\|_2</math>. * <math> \|A\|_2 = \sqrt{\rho(A^{*}A)}\leq\sqrt{\|A^{*}A\|_\infty}\leq\sqrt{\|A\|_1\|A\|_\infty} </math>. ===Matrix norms induced by vector ''α''- and ''β''-norms=== We can generalize the above definition. Suppose we have vector norms <math>\|\cdot\|_{\alpha}</math> and <math>\|\cdot\|_{\beta}</math> for spaces <math>K^n</math> and <math>K^m</math> respectively; the corresponding operator norm is <math display="block"> \|A\|_{\alpha, \beta} = \sup\{ \|Ax\|_\beta : x \in K^n \text{ such that } \|x\|_\alpha \leq 1 \} </math> In particular, the <math>\|A\|_{p}</math> defined previously is the special case of <math>\|A\|_{p, p}</math>. In the special cases of <math>\alpha = 2</math> and <math>\beta=\infty</math>, the induced matrix norms can be computed by<math display="block"> \|A\|_{2,\infty}= \max_{1\le i\le m}\|A_{i:}\|_2, </math> where <math>A_{i:}</math> is the i-th row of matrix <math> A </math>. In the special cases of <math>\alpha = 1</math> and <math>\beta=2</math>, the induced matrix norms can be computed by<math display="block"> \|A\|_{1, 2} = \max_{1\le j\le n}\|A_{:j}\|_2, </math> where <math>A_{:j}</math> is the j-th column of matrix <math> A </math>. Hence, <math> \|A\|_{2,\infty} </math> and <math> \|A\|_{1, 2} </math> are the maximum row and column 2-norm of the matrix, respectively. ===Properties=== Any operator norm is [[#Consistent and compatible norms|consistent]] with the vector norms that induce it, giving <math display="block">\|Ax\|_\beta \leq \|A\|_{\alpha,\beta}\|x\|_\alpha.</math> Suppose <math>\|\cdot\|_{\alpha,\beta}</math>; <math>\|\cdot\|_{\beta,\gamma}</math>; and <math>\|\cdot\|_{\alpha,\gamma}</math> are operator norms induced by the respective pairs of vector norms <math>(\|\cdot\|_\alpha, \|\cdot\|_\beta)</math>; <math>(\|\cdot\|_\beta, \|\cdot\|_{\gamma})</math>; and <math>(\|\cdot\|_\alpha, \|\cdot\|_\gamma)</math>. Then, :<math>\|AB\|_{\alpha,\gamma} \leq \|A\|_{\beta, \gamma} \|B\|_{\alpha, \beta} ;</math> this follows from <math display="block">\|ABx\|_\gamma \leq \|A\|_{\beta, \gamma} \|Bx\|_\beta \leq \|A\|_{\beta, \gamma} \|B\|_{\alpha, \beta} \|x\|_\alpha </math> and <math display="block">\sup_{\|x\|_\alpha = 1} \|ABx \|_\gamma = \|AB\|_{\alpha, \gamma} .</math> ===Square matrices=== Suppose <math>\|\cdot\|_{\alpha, \alpha}</math> is an operator norm on the space of square matrices <math>K^{n \times n}</math> induced by vector norms <math>\|\cdot\|_{\alpha}</math> and <math>\|\cdot\|_\alpha</math>. Then, the operator norm is a sub-multiplicative matrix norm: <math display="block">\|AB\|_{\alpha, \alpha} \leq \|A\|_{\alpha, \alpha} \|B\|_{\alpha, \alpha}.</math> Moreover, any such norm satisfies the inequality {{NumBlk||<math display="block">(\|A^r\|_{\alpha, \alpha})^{1/r} \ge \rho(A) </math> | {{EquationRef|1}}}} for all positive integers ''r'', where {{math|''ρ''(''A'')}} is the [[spectral radius]] of {{mvar|A}}. For [[Symmetric matrix|symmetric]] or [[Hermitian matrix|hermitian]] {{mvar|A}}, we have equality in ({{EquationNote|1}}) for the 2-norm, since in this case the 2-norm ''is'' precisely the spectral radius of {{mvar|A}}. For an arbitrary matrix, we may not have equality for any norm; a counterexample would be <math display="block">A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},</math> which has vanishing spectral radius. In any case, for any matrix norm, we have the [[Spectral radius#Gelfand's formula|spectral radius formula]]: <math display="block">\lim_{r\to\infty}\|A^r\|^{1/r}=\rho(A). </math> ===Energy norms=== If the vector norms <math>\|\cdot\|_{\alpha}</math> and <math>\|\cdot\|_{\beta}</math> are given in terms of [[Norm_(mathematics)#Energy_norm|energy norms]] based on [[Symmetric_matrix|symmetric]] [[Definite_matrix|positive definite]] matrices <math>P</math> and <math>Q</math> respectively, the resulting operator norm is given as <math display="block"> \|A\|_{P, Q} = \sup \{ \|Ax\|_Q : \|x\|_P \leq 1 \}. </math> Using the symmetric [[Square_root_of_a_matrix|matrix square roots]] of <math>P</math> and <math>Q</math> respectively, the operator norm can be expressed as the spectral norm of a modified matrix: <math display="block"> \|A\|_{P, Q} = \|Q^{1/2} A P^{-1/2}\|_{2}. </math> ==Consistent and compatible norms== A matrix norm <math>\| \cdot \|</math> on <math>K^{m \times n}</math> is called ''consistent'' with a vector norm <math>\| \cdot \|_{\alpha}</math> on <math>K^n</math> and a vector norm <math>\| \cdot \|_{\beta}</math> on <math>K^m</math>, if: <math display="block">\left\|Ax\right\|_{\beta} \leq \left\|A\right\| \left\|x\right\|_{\alpha}</math> for all <math>A \in K^{m \times n}</math> and all <math>x \in K^n</math>. In the special case of {{math|1=''m'' = ''n''}} and <math>\alpha = \beta</math>, <math>\| \cdot \|</math> is also called ''compatible'' with <math>\|\cdot \|_{\alpha}</math>. All induced norms are consistent by definition. Also, any sub-multiplicative matrix norm on <math> K^{n \times n} </math> induces a compatible vector norm on <math>K^n</math> by defining <math> \left\| v \right\| := \left\| \left( v, v, \dots, v \right) \right\| </math>. =="Entry-wise" matrix norms== These norms treat an <math> m \times n </math> matrix as a vector of size <math> m \cdot n </math>, and use one of the familiar vector norms. For example, using the ''p''-norm for vectors, {{nowrap|''p'' ≥ 1}}, we get: :<math>\| A \|_{p,p} = \| \mathrm{vec}(A) \|_p = \left( \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p \right)^{1/p}</math> This is a different norm from the induced ''p''-norm (see above) and the Schatten ''p''-norm (see below), but the notation is the same. The special case ''p'' = 2 is the Frobenius norm, and ''p'' = ∞ yields the maximum norm. ==={{math|''L''<sub>2,1</sub>}} and {{math|''L<sub>p,q</sub>''}} norms=== Let <math>(a_1, \ldots, a_n) </math> be the dimension {{mvar|m}} columns of matrix <math>A</math>. From the original definition, the matrix <math> A </math> presents {{mvar|n}} data points in an {{mvar|m}}-dimensional space. The <math>L_{2,1}</math> norm<ref>{{cite conference | last1=Ding | first1=Chris | last2=Zhou | first2=Ding | last3=He | first3=Xiaofeng | last4=Zha | first4=Hongyuan |date = June 2006 | title = R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization | conference = 23rd International Conference on Machine Learning | series=ICML '06 | isbn = 1-59593-383-2 | place = Pittsburgh, PA | pages=281–288 | doi=10.1145/1143844.1143880 | publisher=[[Association for Computing Machinery]] }}</ref> is the sum of the Euclidean norms of the columns of the matrix: :<math>\| A \|_{2,1} = \sum_{j=1}^n \| a_{j} \|_2 = \sum_{j=1}^n \left( \sum_{i=1}^m |a_{ij}|^2 \right)^{1/2}</math> The <math>L_{2,1}</math> norm as an error function is more robust, since the error for each data point (a column) is not squared. It is used in [[robust data analysis]] and [[sparse coding]]. For {{nowrap|''p'', ''q'' ≥ 1}}, the <math>L_{2,1}</math> norm can be generalized to the <math>L_{p,q}</math> norm as follows: :<math>\| A \|_{p,q} = \left(\sum_{j=1}^n \left( \sum_{i=1}^m |a_{ij}|^p \right)^{\frac{q}{p}}\right)^{\frac{1}{q}}.</math> ===Frobenius norm=== {{Main|Hilbert–Schmidt operator}} {{See also|Frobenius inner product}} When {{nowrap|1=''p'' = ''q'' = 2}} for the <math>L_{p,q}</math> norm, it is called the '''Frobenius norm''' or the '''Hilbert–Schmidt norm''', though the latter term is used more frequently in the context of operators on (possibly infinite-dimensional) [[Hilbert space]]. This norm can be defined in various ways: :<math>\|A\|_\text{F} = \sqrt{\sum_{i}^m\sum_{j}^n |a_{ij}|^2} = \sqrt{\operatorname{trace}\left(A^* A\right)} = \sqrt{\sum_{i=1}^{\min\{m, n\}} \sigma_i^2(A)},</math> where the [[trace (matrix)|trace]] is the sum of diagonal entries, and <math>\sigma_i(A)</math> are the [[singular value]]s of <math>A</math>. The second equality is proven by explicit computation of <math>\mathrm{trace}(A^*A)</math>. The third equality is proven by [[singular value decomposition]] of <math>A</math>, and the fact that the trace is invariant under circular shifts. The Frobenius norm is an extension of the Euclidean norm to <math>K^{n \times n}</math> and comes from the [[Frobenius inner product]] on the space of all matrices. The Frobenius norm is sub-multiplicative and is very useful for [[numerical linear algebra]]. The sub-multiplicativity of Frobenius norm can be proved using the [[Cauchy–Schwarz inequality]]. In fact, it is more than sub-multiplicative, as <math display="block">\|AB\|_F \leq\|A\|_{op}\|B\|_F</math>where the operator norm <math>\|\cdot\|_{op} \leq \|\cdot\|_{F}</math>. Frobenius norm is often easier to compute than induced norms, and has the useful property of being invariant under [[rotation matrix|rotations]] (and [[Unitary operator|unitary]] operations in general). That is, <math>\|A\|_\text{F} = \|AU\|_\text{F} = \|UA\|_\text{F}</math> for any unitary matrix <math>U</math>. This property follows from the cyclic nature of the trace (<math>\operatorname{trace}(XYZ) =\operatorname{trace}(YZX) = \operatorname{trace}(ZXY)</math>): :<math>\|AU\|_\text{F}^2 = \operatorname{trace}\left( (AU)^{*}A U \right) = \operatorname{trace}\left( U^{*} A^{*}A U \right) = \operatorname{trace}\left( UU^{*} A^{*}A \right) = \operatorname{trace}\left( A^{*} A \right) = \|A\|_\text{F}^2,</math> and analogously: :<math>\|UA\|_\text{F}^2 = \operatorname{trace}\left( (UA)^{*}UA \right) = \operatorname{trace}\left( A^{*} U^{*} UA \right) = \operatorname{trace}\left( A^{*}A \right) = \|A\|_\text{F}^2,</math> where we have used the unitary nature of <math>U</math> (that is, <math>U^* U = U U^* = \mathbf{I}</math>). It also satisfies :<math>\|A^* A\|_\text{F} = \|AA^*\|_\text{F} \leq \|A\|_\text{F}^2</math> and :<math>\|A + B\|_\text{F}^2 = \|A\|_\text{F}^2 + \|B\|_\text{F}^2 + 2 \operatorname{Re} \left( \langle A, B \rangle_\text{F} \right),</math> where <math>\langle A, B \rangle_\text{F}</math> is the [[Frobenius inner product]], and Re is the real part of a complex number (irrelevant for real matrices) ===Max norm=== The '''max norm''' is the elementwise norm in the limit as {{nowrap|1=''p'' = ''q''}} goes to infinity: :<math> \|A\|_{\max} = \max_{i, j} |a_{ij}|. </math> This norm is not [[#Definition|sub-multiplicative]]; but modifying the right-hand side to <math>\sqrt{m n} \max_{i, j} \vert a_{i j} \vert</math> makes it so. Note that in some literature (such as [[Communication complexity]]), an alternative definition of max-norm, also called the <math>\gamma_2</math>-norm, refers to the factorization norm: :<math> \gamma_2(A) = \min_{U,V: A = UV^T} \| U \|_{2,\infty} \| V \|_{2,\infty} = \min_{U,V: A = UV^T} \max_{i,j} \| U_{i,:} \|_2 \| V_{j,:} \|_2 </math> ==Schatten norms== {{Further|Schatten norm}} The Schatten ''p''-norms arise when applying the ''p''-norm to the vector of [[singular value decomposition|singular values]] of a matrix.<ref name=":1" /> If the singular values of the <math>m \times n</math> matrix <math>A</math> are denoted by ''σ<sub>i</sub>'', then the Schatten ''p''-norm is defined by :<math> \|A\|_p = \left( \sum_{i=1}^{\min\{m,n\}} \sigma_i^p(A) \right)^{1/p}.</math> These norms again share the notation with the induced and entry-wise ''p''-norms, but they are different. All Schatten norms are sub-multiplicative. They are also unitarily invariant, which means that <math>\|A\| = \|UAV\|</math> for all matrices <math>A</math> and all [[unitary matrix|unitary matrices]] <math>U</math> and <math>V</math>. The most familiar cases are ''p'' = 1, 2, ∞. The case ''p'' = 2 yields the Frobenius norm, introduced before. The case ''p'' = ∞ yields the spectral norm, which is the operator norm induced by the vector 2-norm (see above). Finally, ''p'' = 1 yields the '''nuclear norm''' (also known as the ''trace norm'', or the [[Singular Value Decomposition#Ky Fan norms|Ky Fan]] 'n'-norm<ref>{{Cite journal|last=Fan|first=Ky.|date=1951|title=Maximum properties and inequalities for the eigenvalues of completely continuous operators|journal=Proceedings of the National Academy of Sciences of the United States of America| volume=37|issue=11|pages=760–766|doi=10.1073/pnas.37.11.760|pmc=1063464|pmid=16578416|bibcode=1951PNAS...37..760F|doi-access=free}}</ref>), defined as: : <math>\|A\|_{*} = \operatorname{trace} \left(\sqrt{A^*A}\right) = \sum_{i=1}^{\min\{m,n\}} \sigma_i(A),</math> where <math>\sqrt{A^*A}</math> denotes a positive semidefinite matrix <math>B</math> such that <math>BB=A^*A</math>. More precisely, since <math>A^*A</math> is a [[positive semidefinite matrix]], its [[square root of a matrix|square root]] is well defined. The nuclear norm <math>\|A\|_{*}</math> is a [[convex envelope]] of the rank function <math>\text{rank}(A)</math>, so it is often used in [[mathematical optimization]] to search for low-rank matrices. Combining [[von Neumann's trace inequality]] with [[Hölder's inequality]] for Euclidean space yields a version of [[Hölder's inequality]] for Schatten norms for <math> 1/p + 1/q = 1 </math>: : <math>\left|\operatorname{trace}(A^*B)\right| \le \|A\|_p \|B\|_q,</math> In particular, this implies the Schatten norm inequality : <math> \|A\|_F^2 \le \|A\|_p \|A\|_q. </math> ==Monotone norms== A matrix norm <math>\|\cdot \|</math> is called ''monotone'' if it is monotonic with respect to the [[Loewner order]]. Thus, a matrix norm is increasing if :<math>A \preccurlyeq B \Rightarrow \|A\| \leq \|B\|.</math> The Frobenius norm and spectral norm are examples of monotone norms.<ref>{{cite book |last1=Ciarlet |first1=Philippe G. |title=Introduction to numerical linear algebra and optimisation |date=1989 |publisher=Cambridge University Press |location=Cambridge, England |isbn=0521327881 |page=57}}</ref> ==Cut norms== Another source of inspiration for matrix norms arises from considering a matrix as the [[adjacency matrix]] of a [[Weighted graph|weighted]], [[directed graph]].<ref name="FK">{{Cite journal|last1=Frieze| first1=Alan| last2=Kannan|first2=Ravi| date=1999-02-01|title=Quick Approximation to Matrices and Applications| url=https://doi.org/10.1007/s004930050052| journal=Combinatorica|language=en| volume=19 |issue=2 |pages=175–220 |doi=10.1007/s004930050052 |s2cid=15231198 |issn=1439-6912|url-access=subscription}}</ref> The so-called "cut norm" measures how close the associated graph is to being [[bipartite graph|bipartite]]: <math display="block">\|A\|_{\Box}=\max_{S\subseteq[n], T\subseteq[m]}{\left|\sum_{s\in S,t\in T}{A_{t,s}}\right|}</math> where {{math|''A'' ∈ ''K''<sup>''m''×''n''</sup>}}.<ref name="FK" /><ref name="LNGL">{{Cite book| last=Lovász László|title=Large Networks and Graph Limits |publisher=American Mathematical Society|year=2012| isbn=978-0-8218-9085-1 | series=AMS Colloquium Publications|volume=60| location=Providence, RI|pages=127–131 |chapter=The cut distance|author-link=László Lovász}} Note that Lovász rescales {{math|‖''A''‖<sub>□</sub>}} to lie in {{closed-closed|0, 1}}.</ref><ref name="AN">{{Cite book|last1=Alon |first1=Noga |author-link=Noga Alon| last2=Naor| first2=Assaf|title=Proceedings of the thirty-sixth annual ACM symposium on Theory of computing |chapter=Approximating the cut-norm via Grothendieck's inequality | date=2004-06-13| chapter-url=https://doi.org/10.1145/1007352.1007371 | series=STOC '04 |location=Chicago, IL, USA | publisher=Association for Computing Machinery| pages=72–80| doi=10.1145/1007352.1007371 | isbn=978-1-58113-852-8 |s2cid=1667427}}</ref> Equivalent definitions (up to a constant factor) impose the conditions {{math|2{{abs|''S''}} > ''n'' & 2{{abs|''T''}} > ''m''}}; {{math|1=''S'' = ''T''}}; or {{math|1=''S'' ∩ ''T'' = ∅}}.<ref name="LNGL" /> The cut-norm is equivalent to the induced operator norm {{math|‖·‖<sub>∞→1</sub>}}, which is itself equivalent to another norm, called the [[Grothendieck inequality|Grothendieck]] norm.<ref name="AN" /> To define the Grothendieck norm, first note that a linear operator {{Math|''K''<sup>1</sup> → ''K''<sup>1</sup>}} is just a scalar, and thus extends to a linear operator on any {{Math|''K<sup>k</sup>'' → ''K<sup>k</sup>''}}. Moreover, given any choice of basis for {{Math|''K<sup>n</sup>''}} and {{Math|''K<sup>m</sup>''}}, any linear operator {{Math|''K<sup>n</sup>'' → ''K<sup>m</sup>''}} extends to a linear operator {{Math|(''K''<sup>''k''</sup>)<sup>''n''</sup> → (''K''<sup>''k''</sup>)<sup>''m''</sup>}}, by letting each matrix element on elements of {{Math|''K<sup>k</sup>''}} via scalar multiplication. The Grothendieck norm is the norm of that extended operator; in symbols:<ref name="AN" /> <math display="block">\|A\|_{G,k}=\sup_{\text{each } u_j, v_j\in K^k; \|u_j\| = \|v_j\| = 1}{\sum_{j \in [n], \ell \in [m]}{(u_j\cdot v_j) A_{\ell,j}}}</math> The Grothendieck norm depends on choice of basis (usually taken to be the [[standard basis]]) and {{mvar|k}}. ==Equivalence of norms== {{See also|Equivalent norms}} For any two matrix norms <math>\|\cdot\|_{\alpha}</math> and <math>\|\cdot\|_{\beta}</math>, we have that: :<math>r\|A\|_\alpha\leq\|A\|_\beta\leq s\|A\|_\alpha</math> for some positive numbers ''r'' and ''s'', for all matrices <math>A\in K^{m \times n}</math>. In other words, all norms on <math>K^{m \times n}</math> are ''equivalent''; they induce the same [[topology (structure)|topology]] on <math>K^{m \times n}</math>. This is true because the vector space <math>K^{m \times n}</math> has the finite [[dimension (mathematics)|dimension]] <math>m \times n</math>. Moreover, for every matrix norm <math>\|\cdot\|</math> on <math>\R^{n\times n}</math> there exists a unique positive real number <math>k</math> such that <math>\ell\|\cdot\|</math> is a sub-multiplicative matrix norm for every <math>\ell \ge k</math>; to wit, :<math>k = \sup\{\Vert A B \Vert \,:\, \Vert A \Vert \leq 1, \Vert B \Vert \leq 1\}. </math> A sub-multiplicative matrix norm <math>\|\cdot\|_{\alpha}</math> is said to be ''minimal'', if there exists no other sub-multiplicative matrix norm <math>\|\cdot\|_{\beta}</math> satisfying <math>\|\cdot\|_{\beta} < \|\cdot\|_{\alpha}</math>. ===Examples of norm equivalence=== Let <math>\|A\|_p</math> once again refer to the norm induced by the vector ''p''-norm (as above in the Induced norm section). For matrix <math>A\in\R^{m\times n}</math> of [[Rank (linear algebra)|rank]] <math>r</math>, the following inequalities hold:<ref> [[Gene Golub|Golub, Gene]]; [[Charles Van Loan|Charles F. Van Loan]] (1996). Matrix Computations – Third Edition. Baltimore: The Johns Hopkins University Press, 56–57. {{ISBN|0-8018-5413-X}}.</ref><ref>Roger Horn and Charles Johnson. ''Matrix Analysis,'' Chapter 5, Cambridge University Press, 1985. {{ISBN|0-521-38632-2}}.</ref> *<math>\|A\|_2\le\|A\|_F\le\sqrt{r}\|A\|_2</math> *<math>\|A\|_F \le \|A\|_{*} \le \sqrt{r} \|A\|_F</math> *<math>\|A\|_{\max} \le \|A\|_2 \le \sqrt{mn}\|A\|_{\max}</math> *<math>\frac{1}{\sqrt{n}}\|A\|_\infty\le\|A\|_2\le\sqrt{m}\|A\|_\infty</math> *<math>\frac{1}{\sqrt{m}}\|A\|_1\le\|A\|_2\le\sqrt{n}\|A\|_1.</math> ==See also== * [[Dual norm]] * [[Logarithmic norm]] ==Notes== {{notelist|group=Note}} ==References== {{reflist}} ==Bibliography== * [[James W. Demmel]], Applied Numerical Linear Algebra, section 1.7, published by SIAM, 1997. * Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, published by SIAM, 2000. [http://www.matrixanalysis.com] * [[John Watrous (computer scientist)|John Watrous]], Theory of Quantum Information, [https://web.archive.org/web/20160304053759/https://cs.uwaterloo.ca/~watrous/CS766/LectureNotes/02.pdf 2.3 Norms of operators], lecture notes, University of Waterloo, 2011. * [[Kendall Atkinson]], An Introduction to Numerical Analysis, published by John Wiley & Sons, Inc 1989 {{Authority control}} [[Category:Norms (mathematics)]] [[Category:Linear algebra]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Anchor
(
edit
)
Template:Authority control
(
edit
)
Template:Cite book
(
edit
)
Template:Cite conference
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Closed-closed
(
edit
)
Template:Efn
(
edit
)
Template:EquationNote
(
edit
)
Template:For
(
edit
)
Template:Further
(
edit
)
Template:ISBN
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:Multiple issues
(
edit
)
Template:Mvar
(
edit
)
Template:Notelist
(
edit
)
Template:Nowrap
(
edit
)
Template:NumBlk
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)