Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix of ones
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Matrix with every entry equal to one}} {{CS1 config|mode=cs2}} In [[mathematics]], a '''matrix of ones''' or '''all-ones matrix''' is a [[Matrix (mathematics)|matrix]] with every entry equal to [[1 (number)|one]].<ref>{{citation|title=Matrix Analysis|first1=Roger A.|last1=Horn|first2=Charles R.|last2=Johnson|author2-link= Charles Royal Johnson |publisher=Cambridge University Press|year= 2012|isbn=9780521839402|page=8|url=https://books.google.com/books?id=5I5AYeeh0JUC&pg=PA8|contribution=0.2.8 The all-ones matrix and vector}}.</ref> For example: :<math>J_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix},\quad J_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},\quad J_{2,5} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix},\quad J_{1,2} = \begin{bmatrix} 1 & 1 \end{bmatrix}.\quad</math> Some sources call the all-ones matrix the '''unit matrix''',<ref>{{MathWorld|title=Unit Matrix|urlname=UnitMatrix}}</ref> but that term may also refer to the [[identity matrix]], a different type of matrix. A '''vector of ones''' or '''all-ones vector''' is matrix of ones having [[row and column vectors|row or column form]]; it should not be confused with ''[[unit vector]]s''. ==Properties== For an {{math|''n'' Γ ''n''}} matrix of ones ''J'', the following properties hold: * The [[trace (linear algebra) | trace]] of ''J'' equals ''n'',<ref>{{citation|title=Algebraic Combinatorics: Walks, Trees, Tableaux, and More|publisher=Springer|year=2013|isbn=9781461469988|first=Richard P.|last=Stanley|authorlink=Richard P. Stanley|url=https://books.google.com/books?id=_Tc_AAAAQBAJ&pg=PA4|at=Lemma 1.4, p. 4}}.</ref> and the [[determinant]] equals 0 for ''n'' β₯ 2, but equals 1 if ''n'' = 1. * The [[characteristic polynomial]] of ''J'' is <math>(x - n)x^{n-1}</math>. * The [[Minimal_polynomial_(linear_algebra)|minimal polynomial]] of ''J'' is <math>x^2-nx</math>. * The [[rank of a matrix|rank]] of ''J'' is 1 and the [[eigenvalue]]s are ''n'' with [[Eigenvalues_and_eigenvectors#Algebraic_multiplicity|multiplicity]] 1 and 0 with multiplicity {{math|''n'' β 1}}.<ref>{{harvtxt|Stanley|2013}}; {{harvtxt|Horn|Johnson|2012}}, [https://books.google.com/books?id=5I5AYeeh0JUC&pg=PA65 p. 65].</ref> * <math> J^k = n^{k-1} J</math> for <math>k = 1,2,\ldots .</math><ref name="timm">{{citation|title=Applied Multivariate Analysis|series=Springer texts in statistics|first=Neil H.|last=Timm|publisher=Springer|year=2002|isbn=9780387227719|page=30|url=https://books.google.com/books?id=vtiyg6fnnskC&pg=PA30}}.</ref> * ''J'' is the [[neutral element]] of the [[Hadamard product (matrices)|Hadamard product]].<ref>{{citation|title=Introduction to Abstract Algebra|first=Jonathan D. H.|last=Smith|publisher=CRC Press|year=2011|isbn=9781420063721|page=77|url=https://books.google.com/books?id=PQUAQh04lrUC&pg=PA77}}.</ref> When ''J'' is considered as a matrix over the [[real number]]s, the following additional properties hold: * ''J'' is [[Definite symmetric matrix|positive semi-definite matrix]]. *The matrix <math>\tfrac1n J</math> is [[Idempotent matrix|idempotent]].<ref name="timm"/> *The [[matrix exponential]] of ''J'' is <math>\exp(\mu J)=I+\frac{e^{\mu n}-1}{n}J</math> ==Applications== The all-ones matrix arises in the mathematical field of [[combinatorics]], particularly involving the application of algebraic methods to [[graph theory]]. For example, if ''A'' is the [[adjacency matrix]] of an ''n''-vertex [[undirected graph]] ''G'', and ''J'' is the all-ones matrix of the same dimension, then ''G'' is a [[regular graph]] if and only if ''AJ'' = ''JA''.<ref>{{citation|title=Algebraic Combinatorics|first=Chris|last=Godsil|authorlink= Chris Godsil |publisher=CRC Press|year=1993|isbn=9780412041310|url=https://books.google.com/books?id=eADtlNCkkIMC&pg=PA25|at=Lemma 4.1, p. 25}}.</ref> As a second example, the matrix appears in some linear-algebraic proofs of [[Cayley's formula]], which gives the number of [[spanning tree]]s of a [[complete graph]], using the [[matrix tree theorem]]. The logical [[square root]]s of a matrix of ones, [[logical matrix|logical matrices]] whose square is a matrix of ones, can be used to characterize the [[central groupoid]]s. Central groupoids are algebraic structures that obey the [[identity (mathematics)|identity]] <math>(a\cdot b)\cdot (b\cdot c)=b</math>. Finite central groupoids have a [[square number]] of elements, and the corresponding logical matrices exist only for those dimensions.<ref>{{citation | last = Knuth | first = Donald E. | author-link = Donald Knuth | doi = 10.1016/S0021-9800(70)80032-1 | journal = [[Journal of Combinatorial Theory]] | mr = 259000 | pages = 376β390 | title = Notes on central groupoids | volume = 8 | year = 1970| issue = 4 }}</ref> ==See also== * [[Zero matrix]], a matrix where all entries are zero * [[Single-entry matrix]] ==References== {{reflist}} {{notelist}} {{Matrix classes}} [[Category:Matrices (mathematics)]] [[Category:1 (number)]] {{Linear-algebra-stub}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:CS1 config
(
edit
)
Template:Citation
(
edit
)
Template:Harvtxt
(
edit
)
Template:Linear-algebra-stub
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Matrix classes
(
edit
)
Template:Notelist
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)