Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mechanization
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Process of changing from working by hand or with animals to work with machinery}} [[Image:Agricola1.jpg|thumb|right|A water-powered [[Hoist (device)#Mine hoists|mine hoist]] used for raising ore. This woodblock is from ''[[De re metallica]]'' by George Bauer (pen name [[Georgius Agricola]], ca. 1555) an early mining textbook that contains numerous drawings and descriptions of mining equipment.]] '''Mechanization''' (or '''mechanisation''') is the process of changing from working largely or exclusively by hand or with animals to doing that work with machinery. In an early engineering text, a machine is defined as follows: {{blockquote|Every machine is constructed for the purpose of performing certain mechanical operations, each of which supposes the existence of two other things besides the machine in question, namely, a moving power, and an object subject to the operation, which may be termed the work to be done. Machines, in fact, are interposed between the power and the work, for the purpose of adapting the one to the other.<ref>{{cite book |title=Principles of Mechanism: Designed For The Use Of Students In The Universities And For Engineering Students Generally |last=Willis |first= Robert |year=1861 |publisher =John W. Parker |location=London |url=https://books.google.com/books?id=1CCEKSqQaqcC&pg=PA1}}</ref>}} In every fields, mechanization includes the use of hand tools. In modern usage, such as in engineering or economics, mechanization implies [[machine]]ry more complex than hand tools and would not include simple devices such as an ungeared horse or donkey mill. Devices that cause speed changes or changes to or from reciprocating to rotary motion, using means such as [[gear]]s, [[pulley]]s or [[line shaft|sheaves]] and belts, [[drive shaft|shafts]], [[Cam (mechanism)|cam]]s and [[Crank (mechanism)|cranks]], usually are considered machines. After [[electrification]], when most small machinery was no longer hand powered, mechanization was synonymous with motorized machines.<ref>Jerome (1934) gives the industry classification of machine tools as being "other than hand power". Beginning with the 1900 U.S. census, power use was part of the definition of a FACTORY , distinguishing it from a workshop.</ref> Extension of mechanization of the production process is termed as [[automation]] and it is controlled by a [[Feedback|closed loop]] system in which feedback is provided by the sensors. In an automated machine the work of different mechanisms is performed automatically.<ref>{{usurped|1=[https://web.archive.org/web/20190417084318/https://mechanicalsite.com/mechanization-automation Mechanization & Automation]}}, Mechanical Engineering Community, retrieved 2018-04-17.</ref> ==History== [[File:Salisbury 02.jpg|thumb|upright|The [[Salisbury Cathedral clock]] ca. 1386. A clock is a mechanical instrument rather than a true machine. Although this clock had iron gears, many machines of the early [[Industrial Revolution]] used wooden parts until around 1800.]] ===Ancient times=== [[Water wheel]]s date to the Roman period and were used to grind grain and lift irrigation water. Water-powered bellows were in use on [[blast furnaces]] in China in 31 AD.<ref>{{cite book |title=The Genius of China: 3000 years of science, discovery and invention |url=https://archive.org/details/geniusofchina3000temp/page/55 |url-access=limited |last1=Temple |first1= Robert |author2=Joseph Needham |year=1986 |publisher=Simon and Schuster |location=New York |page=55 |isbn=9780671620288 | postscript = <Based on the works of Joseph Needham>}}</ref> By the 13th century, water wheels powered [[sawmill]]s<ref name ="McNeil1990">{{cite book |title=An Encyclopedia of the History of Technology |last=McNeil |first=Ian |year=1990 |publisher=Routledge |location=London |isbn=0-415-14792-1 |url=https://archive.org/details/isbn_9780415147927 |url-access=registration }}</ref> and [[trip hammer]]s, to pull cloth and pound flax and later cotton rags into pulp for making paper. Trip hammers are shown crushing ore in ''[[De re Metallica]]'' (1555). [[Clock]]s were some of the most complex early mechanical devices. Clock makers were important developers of [[machine tools]] including gear and screw cutting machines, and were also involved in the mathematical development of gear designs. Clocks were some of the earliest mass-produced items, beginning around 1830.<ref name="Roe1916">{{citation|last=Roe|first=Joseph Wickham|title=English and American Tool Builders|url=https://books.google.com/books?id=X-EJAAAAIAAJ|year=1916|location=New Haven, Connecticut|publisher=Yale University Press|lccn=16011753}}. Reprinted by McGraw-Hill, New York and London, 1926 ({{LCCN|27024075}}); and by Lindsay Publications, Inc., Bradley, Illinois, ({{ISBN|978-0-917914-73-7}}).</ref><ref name="Robinson&Musson">{{cite book|title=Science and Technology in the Industrial Revolution|url=https://archive.org/details/sciencetechnolog00aemu|url-access=registration|last=Musson|author2=Robinson|publisher=University of Toronto Press|year=1969|page=[https://archive.org/details/sciencetechnolog00aemu/page/69 69]|isbn=9780802016379 }}</ref> Water-powered bellows for blast furnaces, used in China in ancient times, were in use in Europe by the 15th century. ''De re Metallica'' contains drawings related to bellows for blast furnaces including a fabrication drawing. Improved gear designs decreased wear and increased efficiency. Mathematical gear designs were developed in the mid 17th century. French mathematician and engineer [[Girard Desargues|Desargues]] designed and constructed the first mill with [[Epicyclic gearing|epicycloidal teeth]] ca. 1650. In the 18th century [[involute gear]]s, another mathematical derived design, came into use. Involute gears are better for meshing gears of different sizes than epicycloidal.<ref name="Robinson&Musson"/> Gear cutting machines came into use in the 18th century.<ref name="Roe1916"/> ===Industrial revolution=== The [[Newcomen steam engine]] was first used, to pump water from a mine, in 1712. [[John Smeaton]] introduced metal gears and axles to water wheels in the mid to last half of the 18th century. The [[Industrial Revolution]] started mainly with textile machinery, such as the [[spinning jenny]] (1764) and [[water frame]] (1768). Demand for metal parts used in textile machinery led to the invention of many [[machine tool]]s in the late 1700s until the mid-1800s. After the early decades of the 19th century, iron increasingly replaced wood in gearing and shafts in textile machinery. In the 1840s ''self acting'' machine tools were developed. Machinery was developed to make nails ca. 1810. The Fourdrinier [[paper machine]] for [[continuous production]] of paper was patented in 1801, displacing the centuries-old hand method of making individual sheets of paper. One of the first mechanical devices used in agriculture was the [[seed drill]] invented by [[Jethro Tull (agriculturist)|Jethro Tull]] around 1700. The seed drill allowed more uniform spacing of seed and planting depth than hand methods, increasing yields and saving valuable seed. In 1817, [[History of the bicycle|the first bicycle was invented and used]] in Germany. [[Mechanized agriculture]] greatly increased in the late eighteenth and early nineteenth centuries with horse drawn [[reaper]]s and horse powered [[threshing machine]]s.<ref name="Rumely1910">{{Cite journal |last=Rumeley |first=Edward A. |date=August 1910 |title=The Passing Of The Man With The Hoe |journal=[[World's Work|The World's Work: A History of Our Time]] |volume=XX |pages=13246–13258 |url=https://books.google.com/books?id=HsrkfU461xAC&pg=PA13246 |access-date=2009-07-10 }}</ref> By the late nineteenth century steam power was applied to threshing and steam tractors appeared. Internal combustion began being used for tractors in the early twentieth century. Threshing and harvesting was originally done with attachments for tractors, but in the 1930s independently powered [[combine harvester]]s were in use. In the mid to late 19th century, hydraulic and pneumatic devices were able to power various mechanical actions, such as positioning tools or work pieces.<ref>{{cite book |title=A History of Industrial Power in the United States, 1730–1930, Vol. 3: The Transmission of Power |last=Hunter |first=Louis C. |author2=Bryant, Lynwood |year=1991 |publisher=MIT Press |location=Cambridge, Massachusetts, London |isbn=0-262-08198-9 |url-access=registration |url=https://archive.org/details/historyofindustr00hunt }}</ref> Pile drivers and steam hammers are examples for heavy work. In food processing, pneumatic or hydraulic devices could start and stop filling of cans or bottles on a conveyor. Power steering for automobiles uses hydraulic mechanisms, as does practically all earth moving equipment and other construction equipment and many attachments to tractors. Pneumatic (usually compressed air) power is widely used to operate industrial valves. ===Twentieth century=== By the early 20th century machines developed the ability to perform more complex operations that had previously been done by skilled craftsmen.<ref name="Jerome 1934"/> An example is the glass bottle making machine developed 1905. It replaced highly paid glass blowers and child labor helpers and led to the [[mass production]] of glass bottles.<ref>{{ Cite web | title = The American Society of Mechanical Engineers Designates the Owens "AR" Bottle Machine as an International Historic Engineering Landmark | year = 1983 | url = http://files.asme.org/ASMEORG/Communities/History/Landmarks/5612.pdf | url-status = dead | archive-url = https://web.archive.org/web/20130405015937/http://files.asme.org/ASMEORG/Communities/History/Landmarks/5612.pdf | archive-date = 2013-04-05 }}</ref> After 1900 factories were [[electrification|electrified]], and electric motors and controls were used to perform more complicated mechanical operations. This resulted in mechanized processes to manufacture almost all goods. ===Categories=== {{see also|Mechanized agriculture|Productivity improving technologies (historical)#Mechanization|list of agricultural machinery}} [[File:Involute wheel.gif|frame|Two [[involute gear]]s, the left driving the right: Blue arrows show the contact forces between them. The force line (or [[Gear#Nomenclature|line of action]]) runs along a tangent common to both base circles. (In this situation, there is no force, and no contact needed, along the opposite common tangent not shown.) The involutes here are traced out in converse fashion: points (of contact) move along the ''stationary'' force-vector "string" as if it was being unwound from the left ''rotating'' base circle, and wound onto the right ''rotating'' base circle.]] In manufacturing, mechanization replaced hand methods of making goods. Prime movers are devices that convert thermal, potential or kinetic energy into mechanical work. Prime movers include internal combustion engines, combustion turbines (jet engines), water wheels and turbines, windmills and wind turbines and steam engines and turbines. Powered transportation equipment such as locomotives, automobiles and trucks and airplanes, is a classification of machinery which includes sub classes by engine type, such as internal combustion, combustion turbine and steam. Inside factories, warehouses, lumber yards and other manufacturing and distribution operations, [[material handling]] equipment replaced manual carrying or hand trucks and carts.<ref name="Jerome 1934"/> In mining and excavation, power shovels replaced picks and shovels.<ref name="Jerome 1934"/> Rock and ore crushing had been done for centuries by water-powered [[trip hammer]]s, but trip hammers have been replaced by modern ore [[crusher]]s and [[ball mill]]s. [[Bulk material handling]] systems and equipment are used for a variety of materials including coal, ores, grains, sand, gravel and wood products.<ref name="Jerome 1934"/> Construction equipment includes [[crane (machine)|cranes]], [[concrete mixer]]s, [[concrete pump]]s, [[cherry picker]]s and an assortment of power tools. ===Powered machinery=== {{see also|Mass production}} Powered machinery today usually means either by electric motor or internal combustion engine. Before the first decade of the 20th century powered usually meant by steam engine, water or wind. Many of the early machines and machine tools were hand powered, but most changed over to water or steam power by the early 19th century. Before [[electrification]], mill and factory power was usually transmitted using a [[line shaft]]. Electrification allowed individual machines to each be powered by a separate motor in what is called ''unit drive''. Unit drive allowed factories to be better arranged and allowed different machines to run at different speeds. Unit drive also allowed much higher speeds, which was especially important for [[machine tools]].<ref>Bartelt, Terry. Industrial Automated Systems: Instrumentation and Motion Control. Cengage Learning, 2010.</ref> A step beyond mechanization is [[automation]]. Early production machinery, such as the glass bottle blowing machine (ca. 1890s), required a lot of operator involvement. By the 1920s fully automatic machines, which required much less operator attention, were being used.<ref name="Jerome 1934">{{Cite book | last1=Jerome | first1=Harry| title=Mechanization in Industry, National Bureau of Economic Research | year=1934 | url=https://www.nber.org/chapters/c5238.pdf }}</ref> === Military usage === {{main|Armoured warfare}} The term is also used in the military to refer to the use of [[Caterpillar track|tracked]] [[Armoured fighting vehicle|armoured vehicles]], particularly [[armoured personnel carrier]]s, to move troops ( [[mechanized infantry]]) that would otherwise have marched or ridden trucks into combat. In military terminology, ''mechanized'' refers to ground units that can fight from vehicles, while ''motorized'' refers to units ([[motorized infantry]]) that are transported and go to battle in unarmoured vehicles such as trucks. Thus, a towed artillery unit is considered motorized while a self-propelled one is mechanized. ==Mechanical vs human labour== When we compare the efficiency of a labourer, we see that he has an efficiency of about 1%–5.5% (depending on whether he uses arms, or a combination of arms and legs).<ref>{{Cite report | last1 = Ayres | last2 = Ayres | last3 =Warr | first1 = R. U. | first2 = L. W. | first3 =B. | title = Exergy, Power and Work in the U. S. Economy 1900–1998, Insead's Center For the Management of Environmental Resources, 2002/52/EPS/CMER | year = 2002 | url =http://flora.insead.edu/fichiersti_wp/inseadwp2002/2002-52.pdf }}</ref> Internal combustion engines mostly have an efficiency of about 20%,<ref>[http://ffden-2.phys.uaf.edu/102spring2002_Web_projects/Z.Yates/Zach%27s%20Web%20Project%20Folder/EICE%20-%20Main.htm IC Engine 20% efficient]</ref> although [[Wärtsilä-Sulzer RTA96-C|large diesel engines]], such as those used to power ships, may have efficiencies of nearly 50%. Industrial electric motors have efficiencies up to the low 90% range, before correcting for the conversion efficiency of fuel to electricity of about 35%.<ref>{{Cite web |url=http://www.e-traction.eu/content_thewheel_advantages.php |title=Electrical engines with combined power converter / motor at 86% efficiency |access-date=2011-03-22 |archive-url=https://web.archive.org/web/20160305103841/http://e-traction.eu/content_thewheel_advantages.php |archive-date=2016-03-05 |url-status=dead }}</ref> When we compare the costs of using an internal combustion engine to a worker to perform work, we notice that an engine can perform more work at a comparative cost. 1 liter of fossil fuel burnt with an IC engine equals about 50 hands of workers operating for 24 hours or 275 arms and legs for 24 hours.<ref>[http://www.manicore.com/anglais/documentation_a/slaves.html 1 liter of fuel yielding 100 arms for 24 hours, when efficiency is 40% which is never]</ref><ref>Home documentary by Yann Arthus Bertrand too stating that 1 liter of fuel yields 100 arms for 24 hours; probably from same calculation</ref> In addition, the combined work capability of a human is also much lower than that of a machine. An average human worker can provide work good for around 0,9 hp (2.3 MJ per hour) <ref>{{Cite journal |last=Ozkan |first=Burhan |year=2004 |title=Energy input–output analysis in Turkish agriculture |journal=Renewable Energy |volume=29 |issue=1 |page=39 |doi=10.1016/s0960-1481(03)00135-6 |bibcode=2004REne...29...39O |url=http://www.econturk.org/Turkisheconomy/energyinput.pdf |access-date=2018-04-20 |archive-date=2022-05-25 |archive-url=https://web.archive.org/web/20220525140642/http://www.econturk.org/Turkisheconomy/energyinput.pdf |url-status=dead }}</ref> while a machine (depending on the type and size) can provide for far greater amounts of work. For example, it takes more than one and a half hour of hard labour to deliver only one kWh – which a small engine could deliver in less than one hour while burning less than one litre of petroleum fuel. This implies that a gang of 20 to 40 men will require a financial compensation for their work at least equal to the required expended food calories (which is at least 4 to 20 times higher). In most situations, the worker will also want compensation for the lost time, which is easily 96 times greater per day. Even if we assume the real wage cost for the human labour to be at US $1.00/day, an energy cost is generated of about $4.00/kWh. Despite this being a low wage for hard labour, even in some of the countries with the lowest wages, it represents an energy cost that is significantly more expensive than even exotic power sources such as solar photovoltaic panels (and thus even more expensive when compared to wind energy harvesters or luminescent solar concentrators).<ref>[http://www.fao.org/docrep/010/ah810e/AH810E08.htm Combined work capability of human vs machines]</ref> {{See also|Economic growth#Energy and energy efficiency theories|l1=Energy and energy efficiency theories}} == Levels of mechanization == For simplification, one can study mechanization as a series of steps.<ref>{{Cite web |url=http://ekendraonline.com/engg/general/mechanization-and-its-level.html |title=Mechanization and its level |access-date=2010-05-13 |archive-date=2011-08-15 |archive-url=https://web.archive.org/web/20110815131650/http://ekendraonline.com/engg/general/mechanization-and-its-level.html |url-status=dead }}</ref> Many{{quantify|date=December 2013}} students refer to this series as indicating basic-to-advanced forms of mechanical society.<ref> [http://ekendraonline.com/engg/general/mechanization-and-its-level.html basic-to-advanced] {{Webarchive|url=https://web.archive.org/web/20110815131650/http://ekendraonline.com/engg/general/mechanization-and-its-level.html |date=2011-08-15 }}</ref> # hand/muscle power # hand-tools # powered hand-tools, e.g. electric-controlled # powered tools, single functioned, fixed cycle # powered tools, multi-functioned, program controlled # powered tools, remote-controlled # powered tools, activated by work-piece (e.g.: coin phone) # measurement # selected signaling control, e.g. hydro power control # performance recording # automated machine action altered through measurement # segregation/rejection according to measurement # selection of appropriate action cycle # correcting performance after operation # correcting performance during operation == See also == * [[Assembly line]] * [[Bulk materials handling]] * [[Industrialisation]] * [[Newly industrialized country]] ==References== {{Reflist}} ==Further reading== {{wikiquote}} *{{Cite book | last1 = Jerome | first1 = Harry | title = Mechanization in Industry, National Bureau of Economic Research | year = 1934 }} *{{cite book |title = A History of Industrial Power in the United States, 1730–1930, Vol. 3: The Transmission of Power |last = Hunter |first = Louis C. |author2 = Bryant, Lynwood |year = 1991 |publisher = MIT Press |location = Cambridge, Massachusetts, London |isbn = 0-262-08198-9 |url-access = registration |url = https://archive.org/details/historyofindustr00hunt }} {{Industrial Revolution}} {{History of technology}} {{Authority control}} [[Category:Secondary sector of the economy]] [[Category:Agricultural machinery]] [[Category:Armoured warfare]] [[Category:Machinery]] [[Category:Industrial history]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Blockquote
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite report
(
edit
)
Template:Cite web
(
edit
)
Template:Comma separated entries
(
edit
)
Template:History of technology
(
edit
)
Template:ISBN
(
edit
)
Template:Industrial Revolution
(
edit
)
Template:LCCN
(
edit
)
Template:Main
(
edit
)
Template:Main other
(
edit
)
Template:Navbox
(
edit
)
Template:Quantify
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Usurped
(
edit
)
Template:Webarchive
(
edit
)
Template:Wikiquote
(
edit
)