Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mertens conjecture
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Disproved mathematical conjecture}} [[Image:Congettura Mertens.png|thumb|right|The graph shows the [[Mertens function]] <math>M(n)</math> and the square roots <math>\pm \sqrt{n}</math> for <math>n \le 10,000</math>. After computing these values, Mertens conjectured that the absolute value of <math>M(n)</math> is always bounded by <math>\sqrt{n}</math>. This hypothesis, known as the Mertens conjecture, was disproved in 1985 by [[Andrew Odlyzko]] and [[Herman te Riele]].]] In [[mathematics]], the '''Mertens conjecture''' is the statement that the [[Mertens function]] <math>M(n)</math> is bounded by <math>\pm\sqrt{n}</math>. Although now disproven, it had been shown to imply the [[Riemann hypothesis]]. It was conjectured by [[Thomas Joannes Stieltjes]], in an 1885 letter to [[Charles Hermite]] (reprinted in {{harvs|txt|last=Stieltjes|authorlink=Thomas Joannes Stieltjes|year=1905}}), and again in print by {{harvs|txt|authorlink=Franz Mertens|last=Mertens|first=Franz|year=1897}}, and disproved by {{harvs|txt|last1=Odlyzko|first1=Andrew|authorlink1=Andrew Odlyzko|last2=te Riele|first2=Herman|authorlink2=Herman te Riele|year=1985}}. It is a striking example of a mathematical conjecture proven false despite a large amount of computational evidence in its favor. == Definition == In [[number theory]], the [[Mertens function]] is defined as : <math>M(n) = \sum_{1 \le k \le n} \mu(k),</math> where μ(k) is the [[Möbius function]]; the '''Mertens conjecture''' is that for all ''n'' > 1, : <math>|M(n)| < \sqrt{n}.</math> == Disproof of the conjecture == [[Thomas Joannes Stieltjes|Stieltjes]] claimed in 1885 to have proven a weaker result, namely that <math>m(n) := M(n)/\sqrt{n}</math> was [[Bounded function|bounded]], but did not publish a proof.<ref>{{cite book |editor1-last=Borwein |editor1-first=Peter |editor1-link=Peter Borwein |editor2-last=Choi |editor2-first=Stephen |editor3-last=Rooney |editor3-first=Brendan |editor4-last=Weirathmueller |editor4-first=Andrea |title=The Riemann hypothesis. A resource for the aficionado and virtuoso alike |series=CMS Books in Mathematics |location=New York, NY | publisher=[[Springer-Verlag]] |year=2007 |isbn=978-0-387-72125-5 |zbl=1132.11047 |page=69}}</ref> (In terms of <math>m(n)</math>, the Mertens conjecture is that <math> -1 < m(n) < 1 </math>.) In 1985, [[Andrew Odlyzko]] and [[Herman te Riele]] proved the Mertens conjecture false using the [[Lenstra–Lenstra–Lovász lattice basis reduction algorithm]]:<ref name= disproof>{{Citation | last1=Odlyzko | first1=A. M. | author1-link=Andrew Odlyzko | last2=te Riele | first2=H. J. J. | author2-link=Herman te Riele | title=Disproof of the Mertens conjecture | url=http://www.dtc.umn.edu/~odlyzko/doc/arch/mertens.disproof.pdf | doi=10.1515/crll.1985.357.138 |mr=783538 | year=1985 | journal=[[Journal für die reine und angewandte Mathematik]] | volume=1985 | issue=357 | pages=138–160 | zbl=0544.10047 | s2cid=13016831 | issn=0075-4102 }}</ref><ref name=HBI1889>Sandor et al (2006) pp. 188–189.</ref> : <math>\liminf m(n) < -1.009 </math> {{pad|4}} and {{pad|4}} <math> \limsup m(n) > 1.06.</math> It was later shown that the first [[counterexample]] appears below <math>e^{3.21\times10^{64}} \approx 10^{1.39\times10^{64}}</math><ref>{{cite journal | last1 = Pintz | first1 = J. | year = 1987 | title = An effective disproof of the Mertens conjecture | url = http://www.numdam.org/article/AST_1987__147-148__325_0.pdf | journal = [[Astérisque]] | volume = 147–148 | pages = 325–333 | zbl=0623.10031 }} </ref> but above 10<sup>16</sup>.<ref name=H16>{{cite arXiv |last=Hurst |first=Greg |date=2016 |title=Computations of the Mertens function and improved bounds on the Mertens conjecture |eprint=1610.08551 |class=math.NT}}</ref> The upper bound has since been lowered to <math>e^{1.59\times10^{40}}</math><ref>Kotnik and Te Riele (2006).</ref> or approximately <math>10^{6.91\times10^{39}},</math> and then again to <math>e^{1.017\times10^{29}} \approx 10^{4.416\times10^{28}}</math>.<ref>{{Cite arXiv |last1=Rozmarynowycz |first1=John |last2=Kim |first2=Seungki |year=2023 |title=A New Upper Bound On the Smallest Counterexample To The Mertens Conjecture |class=math.NT |eprint=2305.00345 }}</ref> In 2024, Seungki Kim and [[:fr:Phong Nguyen|Phong Nguyen]] lowered the bound to <math>e^{1.96\times10^{19}} \approx 10^{8.512\times10^{18}}</math>,<ref>{{Cite web |last1=Seungki |first1=Kim |last2=Phong |first2=Nguyen |year=2024 |title=On counterexamples to the Mertens conjecture |url=https://antsmath.org/ANTSXVI/papers/KimNguyen.pdf}}</ref> but no ''explicit'' counterexample is known. The [[law of the iterated logarithm]] states that if {{mvar|μ}} is replaced by a random sequence of +1s and −1s then the order of growth of the partial sum of the first {{mvar|n}} terms is (with probability 1) about {{nowrap|{{math|{{sqrt| ''n'' log log ''n''}}}},}} which suggests that the order of growth of {{math|''m''(''n'')}} might be somewhere around {{math|{{sqrt|log log ''n''}}}}. The actual order of growth may be somewhat smaller; in the early 1990s Steve Gonek conjectured<ref name=NGonMertens /> that the order of growth of {{math|''m''(''n'')}} was <math>(\log\log\log n)^{5/4},</math> which was affirmed by Ng (2004), based on a heuristic argument, that assumed the Riemann hypothesis and certain conjectures about the averaged behavior of zeros of the Riemann zeta function.<ref name=NGonMertens>{{cite web |url=http://www.cs.uleth.ca/~nathanng/RESEARCH/mobius2b.pdf |title=The distribution of the summatory function of the Möbius function |first=Nathan |last=Ng |year=2004}}</ref> In 1979, Cohen and Dress<ref>Cohen, H. and Dress, F. 1979. “Calcul numérique de Mx)” 11–13. [Cohen et Dress 1979], Rapport, de I'ATP A12311 ≪ Informatique 1975 ≫</ref> found the largest known value of <math>m(n) \approx 0.570591</math> for {{math|''M''(7766842813) {{=}} 50286,}} and in 2011, Kuznetsov found the largest known negative value (largest in the sense of [[absolute value]]) <math>m(n) \approx -0.585768</math> for {{math|''M''(11609864264058592345) {{=}} −1995900927.}}<ref>{{cite arXiv |last=Kuznetsov |first=Eugene |date=2011 |title=Computing the Mertens function on a GPU |eprint=1108.0135 |class=math.NT}}</ref> In 2016, Hurst computed {{math|''M''(''n'')}} for every {{math|''n'' ≤ 10<sup>16</sup>}} but did not find larger values of {{math|''m''(''n'')}}.<ref name=H16></ref> In 2006, Kotnik and te Riele improved the upper bound and showed that there are infinitely many values of {{mvar|n}} for which {{nowrap|{{math|''m''(''n'') > 1.2184}},}} but without giving any specific value for such an {{mvar|n}}.<ref>Kotnik & te Riele (2006).</ref> In 2016, Hurst made further improvements by showing : <math>\liminf m(n) < -1.837625 </math> {{pad|4}} and {{pad|4}} <math> \limsup m(n) > 1.826054.</math> == Connection to the Riemann hypothesis == The connection to the Riemann hypothesis is based on the [[Dirichlet series]] for the reciprocal of the [[Riemann zeta function]], :<math>\frac{1}{\zeta(s)} = \sum_{n=1}^\infty \frac{\mu(n)}{n^s},</math> valid in the region <math>\mathcal{Re}(s) > 1</math>. We can rewrite this as a [[Stieltjes integral]] :<math>\frac{1}{\zeta(s)} = \int_0^\infty x^{-s} dM(x)</math> and after integrating by parts, obtain the reciprocal of the zeta function as a [[Mellin transform]] :<math>\frac{1}{s \zeta(s)} = \left\{ \mathcal{M} M \right\}(-s) = \int_0^\infty x^{-s} M(x)\, \frac{dx}{x}.</math> Using the [[Mellin inversion theorem]] we now can express {{mvar|M}} in terms of {{frac|1|{{mvar|ζ}}}} as :<math>M(x) = \frac{1}{2 \pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} \frac{x^s}{s \zeta(s)}\,ds</math> which is valid for {{math|1 < σ < 2}}, and valid for {{math|{{frac|1|2}} < σ < 2}} on the Riemann hypothesis. From this, the Mellin transform integral must be convergent, and hence {{math|''M''(''x'')}} must be {{math|''O''(''x''<sup>e</sup>)}} for every exponent ''e'' greater than {{sfrac|1|2}}. From this it follows that :<math>M(x) = O\Big(x^{\tfrac{1}{2} + \epsilon}\Big)</math> for all positive {{mvar|ε}} is equivalent to the Riemann hypothesis, which therefore would have followed from the stronger Mertens hypothesis, and follows from the hypothesis of Stieltjes that :<math>M(x) = O\Big(x^\tfrac{1}{2}\Big).</math> ==References== {{Reflist}} ==Further reading== * {{cite conference |title=The Mertens Conjecture Revisited | first1=Tadej | last1=Kotnik | first2=Herman | last2=te Riele | author2-link=Herman te Riele | year= 2006 | series=Lecture Notes in Computer Science | volume=4076 | publisher=[[Springer-Verlag]] | book-title=Algorithmic number theory. 7th international symposium, ANTS-VII, Berlin, Germany, July 23--28, 2006. Proceedings | editor1-last=Hess | editor1-first=Florian | pages=156–167 | location=Berlin | doi=10.1007/11792086_12 | zbl=1143.11345 | isbn=3-540-36075-1 }} * {{cite journal | last1 = Kotnik | first1 = T. | last2 = van de Lune | first2 = J. | year = 2004 | title = On the order of the Mertens function | url = http://www.expmath.org/expmath/volumes/13/13.4/Kotnik.pdf | journal = Experimental Mathematics | volume = 13 | issue = 4 | pages = 473–481 | doi = 10.1080/10586458.2004.10504556 | s2cid = 2093469 | url-status = dead | archive-url = https://web.archive.org/web/20070403143340/http://expmath.org/expmath/volumes/13/13.4/Kotnik.pdf | archive-date = 2007-04-03 }} * {{cite journal | last1 = Mertens | first1 = F. | year = 1897 | title = Über eine zahlentheoretische Funktion | journal = Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Abteilung 2a | volume = 106 | pages = 761–830 }} * {{Citation | last1=Odlyzko | first1=A. M. | author1-link=Andrew Odlyzko | last2=te Riele | first2=H. J. J. | author2-link=Herman te Riele | title=Disproof of the Mertens conjecture | url=http://www.dtc.umn.edu/~odlyzko/doc/arch/mertens.disproof.pdf | doi=10.1515/crll.1985.357.138 |mr=783538 | year=1985 | journal=[[Journal für die reine und angewandte Mathematik]] | volume=1985 | issue=357 | pages=138–160 | zbl=0544.10047 | s2cid=13016831 | issn=0075-4102 }} * {{cite journal | last1 = Pintz | first1 = J. | year = 1987 | title = An effective disproof of the Mertens conjecture | url = http://www.numdam.org/article/AST_1987__147-148__325_0.pdf | journal = [[Astérisque]] | volume = 147–148 | pages = 325–333 | zbl=0623.10031 }} * {{citation | editor1-last=Sándor | editor1-first=József | editor2-last=Mitrinović | editor2-first=Dragoslav S. | editor3-last=Crstici |editor3-first=Borislav | title=Handbook of number theory I | location=Dordrecht | publisher=[[Springer-Verlag]] | year=2006 | isbn=1-4020-4215-9 | zbl=1151.11300 | pages=187–189 }} *{{citation|first= T. J.|last= Stieltjes|chapter= Lettre a Hermite de 11 juillet 1885, Lettre #79|pages= 160–164 |editor-first=B.|editor-last= Baillaud |editor2-first= H.|editor2-last= Bourget|title=Correspondance d'Hermite et Stieltjes|place= Paris|publisher= Gauthier—Villars|year= 1905}} * {{mathworld|urlname=MertensConjecture|title=Mertens conjecture}} == External links == * {{cite web |title=A Prime Surprise (Mertens Conjecture) |work=[[Numberphile]] |date=January 23, 2020 |via=[[YouTube]] |url=https://www.youtube.com/watch?v=uvMGZb0Suyc |archive-url=https://ghostarchive.org/varchive/youtube/20211221/uvMGZb0Suyc |archive-date=2021-12-21 |url-status=live}}{{cbignore}} {{Authority control}} [[Category:Analytic number theory]] [[Category:Disproved conjectures]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Cbignore
(
edit
)
Template:Citation
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite conference
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Frac
(
edit
)
Template:Harvs
(
edit
)
Template:Math
(
edit
)
Template:Mathworld
(
edit
)
Template:Mvar
(
edit
)
Template:Nowrap
(
edit
)
Template:Pad
(
edit
)
Template:Reflist
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)