Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Micronutrient
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Essential elements required by organisms}} {{cs1 config|name-list-style=vanc}} {{use American English|date=December 2023}} [[File:Human micronutrient effects.jpg|thumb|Effects of trace element malnutrition on human health.]] '''Micronutrients''' are essential chemicals required by [[Organism|organisms]] in small quantities to perform various biogeochemical processes and regulate [[Physiology|physiological functions]] of cells and [[Organ (anatomy)|organs]].<ref name="lpivit2">{{cite web |date=2023 |title=Vitamins |url=http://lpi.oregonstate.edu/mic/vitamins |access-date=1 December 2023 |publisher=Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR}}</ref> By enabling these processes, micronutrients support the health of organisms throughout life.<ref name="micinad2">{{cite web |date=1 March 2018 |title=Micronutrient Inadequacies in the US Population: an Overview |url=https://lpi.oregonstate.edu/mic/micronutrient-inadequacies/overview |access-date=1 December 2023 |publisher=Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR}}</ref><ref name="natrev2">{{cite journal |last1=Gernand |first1=A. D |last2=Schulze |first2=K. J |last3=Stewart |first3=C. P |last4=West Jr |first4=K. P |last5=Christian |first5=P |year=2016 |title=Micronutrient deficiencies in pregnancy worldwide: Health effects and prevention |journal=Nature Reviews Endocrinology |volume=12 |issue=5 |pages=274–289 |doi=10.1038/nrendo.2016.37 |pmc=4927329 |pmid=27032981}}</ref><ref name="tucker2">{{cite journal |last1=Tucker |first1=K. L |year=2016 |title=Nutrient intake, nutritional status, and cognitive function with aging |journal=Annals of the New York Academy of Sciences |volume=1367 |issue=1 |pages=38–49 |bibcode=2016NYASA1367...38T |doi=10.1111/nyas.13062 |pmid=27116240 |doi-access=free}}</ref> For humans, micronutrients typically take one of three forms: [[Vitamin|vitamins]], [[Trace element|trace elements]], and [[Mineral (nutrient)|dietary minerals.]]<ref name="micinad2" /><ref name="fda-232">{{cite web |date=27 September 2023 |title=Reference Guide: Daily Values for Nutrients |url=https://www.fda.gov/food/nutrition-facts-label/daily-value-nutrition-and-supplement-facts-labels#referenceguide |archive-url=https://web.archive.org/web/20231001072833/https://www.fda.gov/food/nutrition-facts-label/daily-value-nutrition-and-supplement-facts-labels#referenceguide |url-status=dead |archive-date=October 1, 2023 |access-date=1 December 2023 |publisher=US Food and Drug Administration}}</ref> Human micronutrient requirements are in amounts generally less than 100 [[Milligram|milligrams]] per day, whereas [[Nutrient|macronutrients]] are required in gram quantities daily.<ref>{{Cite journal |last=Program |first=Human Foods |date=2024-09-09 |title=Daily Value on the Nutrition and Supplement Facts Labels |url=https://www.fda.gov/food/nutrition-facts-label/daily-value-nutrition-and-supplement-facts-labels#referenceguide |archive-url=https://web.archive.org/web/20231001072833/https://www.fda.gov/food/nutrition-facts-label/daily-value-nutrition-and-supplement-facts-labels#referenceguide |url-status=dead |archive-date=October 1, 2023 |journal=FDA |language=en}}</ref> [[Micronutrient deficiencies|Deficiencies in micronutrient intake]] commonly result in [[malnutrition]].<ref name="micinad2" /><ref name="anyas172">{{cite journal |last1=Blancquaert |first1=D |last2=De Steur |first2=H |last3=Gellynck |first3=X |last4=Van Der Straeten |first4=D |year=2017 |title=Metabolic engineering of micronutrients in crop plants |url=https://biblio.ugent.be/publication/8519050/file/8519052.pdf |journal=Annals of the New York Academy of Sciences |volume=1390 |issue=1 |pages=59–73 |bibcode=2017NYASA1390...59B |doi=10.1111/nyas.13274 |pmid=27801945 |s2cid=9439102 |hdl=1854/LU-8519050}}</ref> In ecosystems, micronutrients most commonly take the form of [[trace elements]] such as iron, strontium, and manganese.<ref name=":2">{{Cite journal |last1=Morel |first1=F. M. M. |last2=Price |first2=N. M. |date=2003-05-09 |title=The Biogeochemical Cycles of Trace Metals in the Oceans |url=https://www.science.org/doi/10.1126/science.1083545 |journal=Science |volume=300 |issue=5621 |pages=944–947 |doi=10.1126/science.1083545 |pmid=12738853|bibcode=2003Sci...300..944M |url-access=subscription }}</ref> Micronutrient abundance in the environment greatly influences [[Biogeochemical cycle|biogeochemical cycles]] at the microbial level which large ecological communities rely on to survive.<ref>{{Cite journal |last=Alongi |first=Daniel M. |date=May 2021 |title=Macro- and Micronutrient Cycling and Crucial Linkages to Geochemical Processes in Mangrove Ecosystems |journal=Journal of Marine Science and Engineering |language=en |volume=9 |issue=5 |pages=456 |doi=10.3390/jmse9050456 |issn=2077-1312 |doi-access=free|bibcode=2021JMSE....9..456A }}</ref> For example, [[Phytoplankton|marine primary producers]] are reliant upon bioavailable dissolved [[iron]] for [[photosynthesis]].<ref>{{Cite journal |last=Morel |first=FrançOis M. M. |date=June 2008 |title=The co-evolution of phytoplankton and trace element cycles in the oceans |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1472-4669.2008.00144.x |journal=Geobiology |language=en |volume=6 |issue=3 |pages=318–324 |doi=10.1111/j.1472-4669.2008.00144.x |issn=1472-4677 |pmid=18498530|bibcode=2008Gbio....6..318M |url-access=subscription }}</ref><ref name=":2" /><ref>{{Cite journal |last1=Tagliabue |first1=Alessandro |last2=Bowie |first2=Andrew R. |last3=Boyd |first3=Philip W. |last4=Buck |first4=Kristen N. |last5=Johnson |first5=Kenneth S. |last6=Saito |first6=Mak A. |date=March 2017 |title=The integral role of iron in ocean biogeochemistry |url=https://www.nature.com/articles/nature21058 |journal=Nature |language=en |volume=543 |issue=7643 |pages=51–59 |doi=10.1038/nature21058 |issn=0028-0836 |pmid=28252066|bibcode=2017Natur.543...51T }}</ref> [[Trophic level|Secondary and tertiary producers]] in oceans are therefore also reliant on the presence of sufficient dissolved iron concentrations. [[File:Role of marine animals in the cycling of iron in the Southern Ocean.jpg|thumb|506x506px|Cycling of iron as a micronutrient in the marine ecosystem.]]Naturally, micronutrients are transferred between reservoirs through processes like fluvial transport, aeolian processes, ocean circulation, volcanism, and biological uptake/transfer.<ref name=":3">{{Cite journal |last1=Mahowald |first1=Natalie M. |last2=Baker |first2=Alex R. |last3=Bergametti |first3=Gilles |last4=Brooks |first4=Nick |last5=Duce |first5=Robert A. |last6=Jickells |first6=Timothy D. |last7=Kubilay |first7=Nilgün |last8=Prospero |first8=Joseph M. |last9=Tegen |first9=Ina |date=2005 |title=Atmospheric global dust cycle and iron inputs to the ocean |url=https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2004GB002402 |journal=Global Biogeochemical Cycles |language=en |volume=19 |issue=4 |doi=10.1029/2004GB002402 |bibcode=2005GBioC..19.4025M |issn=1944-9224|hdl=11511/68526 |hdl-access=free }}</ref><ref name=":2" /><ref>{{Cite journal |last=Anderson |first=Robert F. |date=2020-01-03 |title=Geotraces: Accelerating Research on the Marine Biogeochemical Cycles of Trace Elements and Their Isotopes |url=https://www.annualreviews.org/content/journals/10.1146/annurev-marine-010318-095123 |journal=Annual Review of Marine Science |language=en |volume=12|pages=49–85 |doi=10.1146/annurev-marine-010318-095123 |pmid=31337253 |bibcode=2020ARMS...12...49A |issn=1941-1405|url-access=subscription }}</ref> Anthropogenic activities also alter the abundance of micronutrients in ecosystems. Industrial and agricultural practices can release trace metals into the atmosphere, waterways, and soils and deforestation can lead to higher trace metal-containing-dust transport into oceans.<ref name=":4">{{Cite journal |last=Nordstrom |first=D. Kirk |date=2011-11-01 |title=Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters |url=https://www.sciencedirect.com/science/article/abs/pii/S0883292711003131 |journal=Applied Geochemistry |series=Sources, Transport and Fate of Trace and Toxic Elements in the Environment – IAGS 2009 |volume=26 |issue=11 |pages=1777–1791 |doi=10.1016/j.apgeochem.2011.06.002 |bibcode=2011ApGC...26.1777N |issn=0883-2927|url-access=subscription }}</ref><ref name=":5">{{Cite journal |last1=Senesil |first1=Giorgio S. |last2=Baldassarre |first2=G. |last3=Senesi |first3=N. |last4=Radina |first4=B. |date=1999-07-01 |title=Trace element inputs into soils by anthropogenic activities and implications for human health |url=https://www.sciencedirect.com/science/article/abs/pii/S0045653599001150 |journal=Chemosphere |series=Matter and Energy Fluxes in the Anthropocentric Environment |volume=39 |issue=2 |pages=343–377 |doi=10.1016/S0045-6535(99)00115-0 |pmid=10399847 |bibcode=1999Chmsp..39..343S |issn=0045-6535|url-access=subscription }}</ref><ref name=":6">{{Cite web |last=Sugden |first=Hermine Nalbandian |date=2012-09-01 |title=Trace element emissions from coal, CCC/203 |url=https://www.sustainable-carbon.org/report/trace-element-emissions-from-coal-ccc-203/ |access-date=2025-03-17 |website=ICSC |language=en-GB}}</ref> == Natural abundances of micronutrients == The natural abundance of elements is dependent on their atomic number based on the process of [[nucleosynthesis]] such that elements with higher atomic numbers are typically less abundant than elements with low atomic numbers.<ref>{{Citation |last1=Prantzos |first1=Nikos |title=Stellar Nucleosynthesis |date=2011 |encyclopedia=Encyclopedia of Astrobiology |pages=1584–1592 |editor-last=Gargaud |editor-first=Muriel |url=https://link.springer.com/referenceworkentry/10.1007/978-3-642-11274-4_1084 |access-date=2025-03-17 |place=Berlin, Heidelberg |publisher=Springer |language=en |doi=10.1007/978-3-642-11274-4_1084 |isbn=978-3-642-11274-4 |last2=Ekström |first2=Sylvia |editor2-last=Amils |editor2-first=Ricardo |editor3-last=Quintanilla |editor3-first=José Cernicharo |editor4-last=Cleaves |editor4-first=Henderson James (Jim)|url-access=subscription }}</ref> Most micronutrients are [[Trace element|trace elements]] with high atomic numbers, meaning they exist naturally in low concentrations.<ref name=":72" /> Notable exceptions to this rule are [[boron]] (atomic no. 5), [[manganese]] (atomic no. 25), and iron (atomic no. 26). [[Autotroph|Primary producers]] are the main contributors to the incorporation of micronutrients into a [[Community (ecology)|community's]] chemical inventory.<ref>{{Cite book |last1=Sterner |first1=Robert Warner |title=Ecological stoichiometry: the biology of elements from molecules to the biosphere |last2=Elser |first2=James J. |date=2002 |publisher=Princeton University Press |isbn=978-0-691-07490-0 |location=Princeton}}</ref> [[Consumer (food chain)|Consumers]] within an ecosystem are limited to the micronutrients in the tissue of the primary producers which they eat. Primary producers obtain their micronutrients from their surrounding abiotic environment and the recycling of organic matter in soils.<ref>{{Citation |last=Rengel |first=Zed |title=Cycling of Micronutrients in Terrestrial Ecosystems |date=2007 |work=Nutrient Cycling in Terrestrial Ecosystems |series=Soil Biology |volume=10 |pages=93–121 |editor-last=Marschner |editor-first=Petra |url=https://link.springer.com/chapter/10.1007/978-3-540-68027-7_4?utm |access-date=2025-04-12 |place=Berlin, Heidelberg |publisher=Springer |language=en |doi=10.1007/978-3-540-68027-7_4 |isbn=978-3-540-68027-7 |editor2-last=Rengel |editor2-first=Zdenko|url-access=subscription }}</ref> For example, grasses take in iron from soils which animals rely upon for [[hemoglobin]] production.<ref>{{Cite journal |last1=Kobayashi |first1=Takanori |last2=Nishizawa |first2=Naoko K. |date=2012-06-02 |title=Iron Uptake, Translocation, and Regulation in Higher Plants |url=https://www.annualreviews.org/content/journals/10.1146/annurev-arplant-042811-105522 |journal=Annual Review of Plant Biology |language=en |volume=63|issue=1 |pages=131–152 |doi=10.1146/annurev-arplant-042811-105522 |pmid=22404471 |bibcode=2012AnRPB..63..131K |issn=1543-5008|url-access=subscription }}</ref> {| class="wikitable" |+Micronutrient abundances in geological sinks and corresponding primary producers !Trace Element !Ocean Concentration (ppm)<ref>{{Citation |last=Nozaki |first=Y. |title=ELEMENTAL DISTRIBUTION {{!}} Overview |date=2001-01-01 |encyclopedia=Encyclopedia of Ocean Sciences |pages=840–845 |editor-last=Steele |editor-first=John H. |url=https://www.sciencedirect.com/science/article/abs/pii/B012227430X004025 |access-date=2025-03-17 |place=Oxford |publisher=Academic Press |isbn=978-0-12-227430-5}}</ref> !Continental crust concentration (ppm)<ref>{{Citation |last1=Rudnick |first1=R.L. |title=Composition of the Continental Crust |date=2003 |journal=Treatise on Geochemistry |url=https://doi.org/10.1016/b0-08-043751-6/03016-4 |access-date=2025-03-17 |publisher=Elsevier |isbn=978-0-08-043751-4 |last2=Gao |first2=S.|volume=3 |page=659 |doi=10.1016/b0-08-043751-6/03016-4 |bibcode=2003TrGeo...3....1R |url-access=subscription }}</ref><ref name=":72">{{Cite journal |last1=Sohrin |first1=Yoshiki |last2=Bruland |first2=Kenneth W. |date=2011-09-01 |title=Global status of trace elements in the ocean |url=https://www.sciencedirect.com/science/article/abs/pii/S0165993611001208 |journal=TrAC Trends in Analytical Chemistry |series=Climate-Change Impacts on Water Chemistry |volume=30 |issue=8 |pages=1291–1307 |doi=10.1016/j.trac.2011.03.006 |issn=0165-9936|url-access=subscription }}</ref> !Phytoplankton tissue mean concentration (ppm)<ref>{{Cite journal |last1=Collier |first1=Robert |last2=Edmond |first2=John |date=1984-01-01 |title=The trace element geochemistry of marine biogenic particulate matter |url=https://www.sciencedirect.com/science/article/abs/pii/0079661184900089 |journal=Progress in Oceanography |volume=13 |issue=2 |pages=113–199 |doi=10.1016/0079-6611(84)90008-9 |bibcode=1984PrOce..13..113C |hdl=1912/2208 |issn=0079-6611|hdl-access=free }}</ref> !North American grass tissue mean concentration (ppm)<ref>{{Cite journal |last=Kaspari |first=Michael |date=2021-11-03 |title=The Invisible Hand of the Periodic Table: How Micronutrients Shape Ecology |url=https://www.annualreviews.org/content/journals/10.1146/annurev-ecolsys-012021-090118#right-ref-B56 |journal=Annual Review of Ecology, Evolution, and Systematics |language=en |volume=52 |issue=|pages=199–219 |doi=10.1146/annurev-ecolsys-012021-090118 |issn=1543-592X|url-access=subscription }}</ref><ref>{{Cite journal |last1=Kaspari |first1=Michael |last2=de Beurs |first2=Kirsten M. |last3=Welti |first3=Ellen A. R. |date=2021 |title=How and why plant ionomes vary across North American grasslands and its implications for herbivore abundance |url=https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.3459 |journal=Ecology |language=en |volume=102 |issue=10 |pages=e03459 |doi=10.1002/ecy.3459 |pmid=34171182 |bibcode=2021Ecol..102E3459K |issn=1939-9170}}</ref> |- |Fe |0.03 |~35,000 |167.5 |106 |- |Mn |0.02 |~600 |7.7 |48.7 |- |B |4500 |17 | |21.3 |- |Mo |10 |1.1 | |1.0 |- |Co |0.0012 |17.3 | |0.040 |- |Ni |0.48 |47 |12 |1.9 |- |Cu |0.15 |28 |13.5 |3.4 |- |Zn |0.35 |67 |130.8 |15.9 |- |I |58 |1.4 | | |- |V |2.0 |97 | |0 |} == Sources and transport of micronutrients == === Natural cycling === The original source of most nutrients, including micronutrients, is the [[Rock (geology)|geological reservoir]], also called the slow pool.<ref>{{Citation |last=Combs |first=Gerald F. |title=Geological Impacts on Nutrition |date=2013 |work=Essentials of Medical Geology: Revised Edition |pages=179–194 |editor-last=Selinus |editor-first=Olle |url=https://link.springer.com/chapter/10.1007/978-94-007-4375-5_8 |access-date=2025-03-17 |place=Dordrecht |publisher=Springer Netherlands |language=en |doi=10.1007/978-94-007-4375-5_8 |isbn=978-94-007-4375-5|url-access=subscription }}</ref> Micronutrients trapped in rocks and minerals must first be broken down through [[Weathering|physical or chemical weathering]] before they can enter the fast pool, meaning they cycle between reservoirs on shorter timescales.<ref name=":9">{{Cite journal |last=Van Cappellen |first=Philippe |date=2003-01-03 |title=Biomineralization and Global Biogeochemical Cycles |url=https://pubs.geoscienceworld.org/msa/rimg/article-abstract/54/1/357/87499/Biomineralization-and-Global-Biogeochemical-Cycles |journal=Reviews in Mineralogy and Geochemistry |volume=54 |issue=1 |pages=357–381 |doi=10.2113/0540357 |bibcode=2003RvMG...54..357V |issn=1529-6466|url-access=subscription }}</ref> Micronutrients can physically exchange between reservoirs in various ways such as from terrestrial soils to oceans via [[Aeolian processes|aeolian transport]] or [[Fluvial sediment processes|fluvial transport]], from oceans to [[Marine sediment|marine sediments]] via [[Deposition (geology)|deposition]] of organic matter, and from sediments to the geologic reservoir via [[lithification]].<ref name=":9" /><ref name=":2" /><ref name=":3" /> Alternatively, micronutrients can exit the geologic reservoir through tectonic processes such as through [[volcanism]] or [[Hydrothermal vent|hydrothermal vents]].<ref>{{Citation |last1=Sander |first1=S. G. |title=The Export of Iron and Other Trace Metals from Hydrothermal Vents and the Impact on Their Marine Biogeochemical Cycle |date=2016 |work=Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems |pages=9–24 |editor-last=Demina |editor-first=Liudmila L. |url=https://link.springer.com/chapter/10.1007/698_2016_4 |access-date=2025-04-19 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/698_2016_4 |isbn=978-3-319-41340-2 |last2=Koschinsky |first2=A. |editor2-last=Galkin |editor2-first=Sergey V.|url-access=subscription }}</ref><ref>{{Cite journal |last1=Duggen |first1=S. |last2=Olgun |first2=N. |last3=Croot |first3=P. |last4=Hoffmann |first4=L. |last5=Dietze |first5=H. |last6=Delmelle |first6=P. |last7=Teschner |first7=C. |date=2010-03-03 |title=The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review |url=https://bg.copernicus.org/articles/7/827/2010/ |journal=Biogeosciences |language=English |volume=7 |issue=3 |pages=827–844 |doi=10.5194/bg-7-827-2010 |doi-access=free |bibcode=2010BGeo....7..827D |issn=1726-4170}}</ref> === Anthropogenic influences === Anthropogenic industry unintentionally injects micronutrients into various ecosystems across the globe.<ref name=":5" /> The addition of micronutrients into ecosystems can have both positive and negative impacts. In the face of climate change, [[Iron fertilization|the fertilization of oceans with iron]] has been proposed as a method of [[carbon sequestration]];<ref>{{Cite journal |last1=Smetacek |first1=V |last2=Naqvi |first2=S.w.a |date=2008-08-29 |title=The next generation of iron fertilization experiments in the Southern Ocean |url=https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2008.0144 |journal=Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |volume=366 |issue=1882 |pages=3947–3967 |doi=10.1098/rsta.2008.0144|pmid=18757280 |bibcode=2008RSPTA.366.3947S |url-access=subscription }}</ref> however, elevated levels of iron in [[High-nutrient, low-chlorophyll regions|high nutrient, low chlorophyll]] regions of the ocean can cause the production of [[Harmful algal bloom|harmful algal blooms]] which are toxic to both humans and marine life.<ref>{{Cite journal |last1=Williamson |first1=Phillip |last2=Wallace |first2=Douglas W. R. |last3=Law |first3=Cliff S. |last4=Boyd |first4=Philip W. |last5=Collos |first5=Yves |last6=Croot |first6=Peter |last7=Denman |first7=Ken |last8=Riebesell |first8=Ulf |last9=Takeda |first9=Shigenobu |last10=Vivian |first10=Chris |date=2012-11-01 |title=Ocean fertilization for geoengineering: A review of effectiveness, environmental impacts and emerging governance |url=https://www.sciencedirect.com/science/article/abs/pii/S095758201200119X |journal=Process Safety and Environmental Protection |series=Special Issue: Negative emissions technology |volume=90 |issue=6 |pages=475–488 |doi=10.1016/j.psep.2012.10.007 |bibcode=2012PSEP...90..475W |issn=0957-5820|url-access=subscription }}</ref> Similarly, in lakes, isolated seas, and coastal bays or gulfs, addition of micronutrients can cause [[eutrophication]] leading to [[Hypoxia (environmental)|hypoxia]], decreasing ecosystem health.<ref>{{Cite journal |last1=Deininger |first1=Anne |last2=Frigstad |first2=Helene |date=2019-04-25 |title=Reevaluating the Role of Organic Matter Sources for Coastal Eutrophication, Oligotrophication, and Ecosystem Health |journal=Frontiers in Marine Science |language=English |volume=6 |page=210 |doi=10.3389/fmars.2019.00210 |doi-access=free |bibcode=2019FrMaS...6..210D |issn=2296-7745|hdl=11250/2620750 |hdl-access=free }}</ref> Micronutrients are released into ecosystems from many anthropogenic activities. [[Fossil fuel]] combustion releases micronutrients such as Zn, Fe, Ni, and Cu into the atmosphere, surrounding soils, and nearby waterways.<ref name=":6" /> Agricultural fertilizer runoff contains many micronutrients like Fe, Mn, Zn, Cu, Co, B, Mo and Ni. Fertilizer runoff injects these micronutrients into groundwater, soils, and waterways.<ref>{{Cite journal |last1=He |first1=Zhenli L. |last2=Yang |first2=Xiaoe E. |last3=Stoffella |first3=Peter J. |date=2005-12-02 |title=Trace elements in agroecosystems and impacts on the environment |url=https://www.sciencedirect.com/science/article/abs/pii/S0946672X05000969 |journal=Journal of Trace Elements in Medicine and Biology |volume=19 |issue=2 |pages=125–140 |doi=10.1016/j.jtemb.2005.02.010 |bibcode=2005JTEMB..19..125H |issn=0946-672X|url-access=subscription }}</ref> [[Deforestation]] decreases soil compaction, resulting in increased aeolian transport of dust containing micronutrients, especially Fe.<ref name=":3" /> Industrial mining produces [[tailings]] [[Acid mine drainage|which contaminates runoff]]. The improper treatment of mining tailings can result in the leakage of micronutrients into groundwater, soils, and nearby waterways.<ref name=":4" /><ref>{{Cite journal |last1=Qiao |first1=Pengwei |last2=Wang |first2=Shuo |last3=Li |first3=Jiabin |last4=Zhao |first4=Qianyun |last5=Wei |first5=Yan |last6=Lei |first6=Mei |last7=Yang |first7=Jun |last8=Zhang |first8=Zhongguo |date=2023-01-20 |title=Process, influencing factors, and simulation of the lateral transport of heavy metals in surface runoff in a mining area driven by rainfall: A review |url=https://www.sciencedirect.com/science/article/abs/pii/S0048969722062180 |journal=Science of the Total Environment |volume=857 |issue=Pt 1 |pages=159119 |doi=10.1016/j.scitotenv.2022.159119 |pmid=36183764 |bibcode=2023ScTEn.85759119Q |issn=0048-9697|url-access=subscription }}</ref> == Human micronutrient deficiencies == Inadequate intake of essential nutrients predisposes humans to various [[Chronic condition|chronic diseases]], with some 50% of American adults having one or more preventable disease.<ref name="micinad2" /> In the United States, foods poor in micronutrient content and high in [[food energy]] make up some 27% of daily [[calorie]] intake.<ref name="micinad2" /> One US national survey (National Health and Nutrition Examination Survey 2003-2006) found that persons with high sugar intake consumed fewer micronutrients, especially [[Vitamin|vitamins]] A, C, and E, and magnesium.<ref name="micinad2" /> Various strategies have been employed to combat micronutrient deficiencies: === Salt iodization === [[Salt iodization]] is a strategy for addressing [[iodine deficiency]], which is a cause of mental health problems.<ref>{{Cite journal |last1=Redman |first1=Kahla |last2=Ruffman |first2=Ted |last3=Fitzgerald |first3=Penelope |last4=Skeaff |first4=Sheila |date=2016-12-09 |title=Iodine Deficiency and the Brain: Effects and Mechanisms|pmid=25880137 |url=https://www.tandfonline.com/doi/pdf/10.1080/10408398.2014.922042 |journal=Critical Reviews in Food Science and Nutrition|volume=56|issue=16|pages=2695–2713 |doi=10.1080/10408398.2014.922042 |issn=1040-8398|url-access=subscription }}</ref> In 1990, less than 20 percent of households in developing countries had adequate iodine in their diet.<ref name="FlourFortification2">Flour Fortification Initiative, GAIN, Micronutrient Initiative, USAID, The [[World Bank]], UNICEF, ''Investing in the future: a united call to action on vitamin and mineral deficiencies'', p. 19.</ref> By 1994, international partnerships had formed in a global campaign for Universal Salt Iodization. By 2008, it was estimated that 72 percent of households in developing countries included iodized salt in their diets,<ref>UNICEF, ''The State of the World's Children 2010'', Statistical Tables, p. 15.</ref> and the number of countries in which iodine deficiency disorders were a public health concern reduced by more than half from 110 to 47 countries.<ref name="FlourFortification2" /> === Vitamin A supplementation === [[Vitamin A]] deficiency is a major factor in causing [[blindness]] worldwide, particularly among children.<ref name="lpivit2" /> Global vitamin A supplementation efforts have targeted 103 priority countries. Flour fortification has become an increasingly common method by which vitamin A can be added to diets thus reducing deficiencies. <ref>{{Cite journal |last1=Klemm |first1=Rolf D. W. |last2=WestJr. |first2=Keith P. |last3=Palmer |first3=Amanda C. |last4=Johnson |first4=Quentin |last5=Randall |first5=Philip |last6=Ranum |first6=Peter |last7=Northrop-Clewes |first7=Christine |date=2010-03-01 |title=Vitamin A Fortification of Wheat Flour: Considerations and Current Recommendations |url=https://journals.sagepub.com/doi/abs/10.1177/15648265100311S105 |journal=Food and Nutrition Bulletin |language=EN |volume=31 |issue=1_suppl1 |pages=S47–S61 |doi=10.1177/15648265100311S105 |pmid=20629352 |issn=0379-5721|url-access=subscription }}</ref> === Zinc === Zinc is a necessary micronutrient which the human body uses to fight infections and childhood diarrhea. Collectively, zinc deficiencies are responsible for 4% of child morbidity and mortality, as of 2013.<ref>{{Cite journal |last=Penny |first=Mary Edith |date=2013-05-03 |title=Zinc Supplementation in Public Health |url=https://karger.com/anm/article-abstract/62/Suppl.%201/31/433/Zinc-Supplementation-in-Public-Health?redirectedFrom=fulltext |journal=Annals of Nutrition and Metabolism |volume=62 |issue=Suppl. 1 |pages=31–42 |doi=10.1159/000348263 |issn=0250-6807|url-access=subscription }}</ref> Fortification of staple foods such as breads may improve [[Serum (blood)|serum]] zinc levels in the human population, increasing immune strength.<ref name="pmid272816542">{{cite journal |vauthors=Shah D, Sachdev HS, Gera T, De-Regil LM, Peña-Rosas JP |date=June 2016 |title=Fortification of staple foods with zinc for improving zinc status and other health outcomes in the general population |journal=Cochrane Database Syst Rev |volume=2016 |issue=6 |pages=CD010697 |doi=10.1002/14651858.CD010697.pub2 |pmc=8627255 |pmid=27281654}}</ref> Zinc fortification has also been considered for reducing effects cognition, though the effectiveness is still under research.<ref name="pmid272816542" /> ==Plant micronutrient needs== {{Main|Plant nutrition}} Plants rely on micronutrients to build many essential proteins. In fact, every process that supports the growth of a plant is mediated by some protein which contains one of the many micronutrients.<ref name=":1">{{Cite journal |last1=Hänsch |first1=Robert |last2=Mendel |first2=Ralf R |date=2009-06-01 |title=Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl) |url=https://www.sciencedirect.com/science/article/abs/pii/S1369526609000429 |journal=Current Opinion in Plant Biology |series=Physiology and Metabolism |volume=12 |issue=3 |pages=259–266 |doi=10.1016/j.pbi.2009.05.006 |pmid=19524482 |bibcode=2009COPB...12..259H |issn=1369-5266|url-access=subscription }}</ref> For example, Mn is an essential micronutrient for many plants because it builds the structure of photosystem II which splits water molecules to harness energy from electrons.<ref>{{Cite journal |last1=Mukhopadhyay |first1=Sumitra |last2=Mandal |first2=Sanjay K. |last3=Bhaduri |first3=Sumit |last4=Armstrong |first4=William H. |date=2004-09-01 |title=Manganese Clusters with Relevance to Photosystem II |url=https://pubs.acs.org/doi/full/10.1021/cr0206014 |journal=Chemical Reviews |volume=104 |issue=9 |pages=3981–4026 |doi=10.1021/cr0206014 |pmid=15352784 |issn=0009-2665|url-access=subscription }}</ref> Inadequate micronutrient uptake can result in deficiencies and even mortality in extreme cases.<ref name=":8">{{Citation |last=Langridge |first=Peter |title=Micronutrient Toxicity and Deficiency |date=2022 |work=Wheat Improvement: Food Security in a Changing Climate |pages=433–449 |editor-last=Reynolds |editor-first=Matthew P. |url=https://link.springer.com/chapter/10.1007/978-3-030-90673-3_24 |access-date=2025-04-14 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-030-90673-3_24 |isbn=978-3-030-90673-3 |editor2-last=Braun |editor2-first=Hans-Joachim|url-access=subscription }}</ref> Alternatively, elevated concentrations of micronutrients in soils can result in toxicity.<ref name=":8" /> {| class="wikitable" |+Micronutrient functions in plants<ref name=":1" /> !Element !Absorbed chemical species !Examples of complexed proteins or structures used by plants |- |B |H<sub>3</sub>BO<sub>3</sub> |[[Rhamnogalacturonan-II|Rhamnogalacturonan II]] |- |Cl |Cl<sup>-</sup> |[[Oxygen-evolving complex|Oxygen evolving complex]] |- |Cu |Cu<sup>2+</sup> |Ascorbate oxidase [[Polyphenol oxidase]] Cu–Zn superoxide dismutase [[Cytochrome c oxidase|Cytochrome ''c'' oxidase]] |- |Fe |Fe<sup>3+</sup>, Fe<sup>2+</sup> |[[Aconitase]] [[Succinate dehydrogenase]] [[Cytochrome|Cytochromes]] [[Nitrite reductase]] |- |Mn |Mn<sup>2+</sup> |Mn-superoxide dismutase [[Malic enzyme]] [[Phosphoenolpyruvate carboxylase]] Allantoate amidohydrolase |- |Mo |MoO<sub>4</sub><sup>2-</sup> |[[Nitrate reductase]] [[Sulfite oxidase]] [[Aldehyde oxidase]] Xanthine dehydrogenase |- |Ni |Ni<sup>+</sup> |[[Urease]] Ni-chaperone |- |Zn |ZNn<sup>2+</sup> |[[Carbonic anhydrase]] Cu–Zn superoxide dismutase [[Peptide deformylase]] [[Matrix metalloproteinase]] |} '''Examples of Plant Micronutrient Deficiencies''' * [[Chlorosis]], a condition where a plant cannot produce sufficient chlorophyll. A lack in copper, iron, manganese, or zinc can cause chlorosis.<ref>{{Cite journal |last1=Therby-Vale |first1=Rebecca |last2=Lacombe |first2=Benoit |last3=Rhee |first3=Seung Y. |last4=Nussaume |first4=Laurent |last5=Rouached |first5=Hatem |date=2022-05-01 |title=Mineral nutrient signaling controls photosynthesis: focus on iron deficiency-induced chlorosis |url=https://www.cell.com/trends/plant-science/abstract/S1360-1385(21)00311-3 |journal=Trends in Plant Science |language=English |volume=27 |issue=5 |pages=502–509 |doi=10.1016/j.tplants.2021.11.005 |issn=1360-1385 |pmid=34848140|bibcode=2022TPS....27..502T }}</ref> * [[Boron deficiency (plant disorder)|Boron deficiency]], a condition where a plant's ability to reproduce, grow, and create stem cells is inhibited.<ref name=":0">{{Cite journal |last1=Lehto |first1=Tarja |last2=Ruuhola |first2=Teija |last3=Dell |first3=Bernard |date=2010-12-15 |title=Boron in forest trees and forest ecosystems |url=https://www.sciencedirect.com/science/article/abs/pii/S0378112710005608 |journal=Forest Ecology and Management |volume=260 |issue=12 |pages=2053–2069 |doi=10.1016/j.foreco.2010.09.028 |bibcode=2010ForEM.260.2053L |issn=0378-1127|url-access=subscription }}</ref> * [[Molybdenum deficiency (plant disorder)|Molybdenum deficiency]], a condition where a buildup in nitrate because of a lack of nitrogenase production causes leaf yellowing, necrosis, and premature germination.<ref>{{Cite book |last1=Mengel |first1=Konrad |title=Principles of plant nutrition |last2=Kirkby |first2=Ernest A. |last3=Kosegarten |first3=Harald |date=2001 |publisher=Kluwer Academic Publishers |isbn=978-0-7923-7150-2 |edition=5 |location=Dordrecht}}</ref> ==See also== {{Portal|Ecology}} * [[List of micronutrients]] * [[Human nutrition]] * [[Dietary mineral]] (redirects to [[Mineral (nutrient)]]) * [[Silicon#Human nutrition|Silicon § Human nutrition]] * [[Manganese deficiency (medicine)]] ==References== {{Reflist}} {{Authority control}} [[Category:Nutrition]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Cs1 config
(
edit
)
Template:Main
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Use American English
(
edit
)