Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Military technology
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Application of technology for use in warfare}} {{Use dmy dates|date=April 2022}} {{war}} [[File:Schema Grenade-i18n.svg|thumb|Sectional view of the igniter of a Model 1935 grenade]] '''Military technology''' is the application of technology for use in [[warfare]]. It comprises the kinds of technology that are distinctly military in nature and not civilian in application, usually because they lack useful or legal civilian applications, or are dangerous to use without appropriate [[military training]]. The line is porous; [[military invention]]s have been brought into civilian use throughout history, with sometimes minor modification if any, and civilian innovations have similarly been put to military use.<ref>Douglas Peifer, [http://www.ieg-ego.eu/peiferd-2019-en "The Transfer of Military and Naval Technology,"] Europäische Geschichte Online (EGO), published by the Leibniz Institute of European History (IEG), Mainz 2019-05-03.</ref> Military technology is usually researched and developed by [[scientist]]s and engineers specifically for use in battle by the armed forces. Many new technologies came as a result of the [[military funding of science]]. On the other hand, the theories, strategies, concepts and doctrines of warfare are studied under the academic discipline of [[military science]]. '''Armament engineering''' is the design, development, testing and lifecycle management of military weapons and systems. It draws on the knowledge of several traditional engineering disciplines, including [[mechanical engineering]], [[electrical engineering]], [[mechatronics]], [[electro-optics]], [[aerospace engineering]], [[materials engineering]], and [[chemical engineering]]. ==History== {{Main|History of military technology}}This section is divided into the broad cultural developments that affected military technology. ===Ancient technology=== The first use of stone tools may have begun during the [[Paleolithic]] Period. The earliest stone tools are from the site of Lomekwi, Turkana, dating from 3.3 million years ago. Stone tools diversified through the [[Pleistocene]] Period, which ended ~12,000 years ago.<ref name=primitive>{{cite book|last1=Wescott|first1=David|title=Primitive Technology: A Book of Earth Skills|date=1999|publisher=Society of Primitive Technology, Gibbs Smith|location=Layton, UT|isbn=978-0-87905-911-8|page=60}}</ref> The earliest evidence of warfare between two groups is recorded at the site of [[Nataruk]] in Turkana, Kenya, where human skeletons with major traumatic injuries to the head, neck, ribs, knees and hands, including an embedded obsidian bladelet on a skull, are evidence of inter-group conflict between groups of nomadic hunter-gatherers 10,000 years ago.<ref>{{Cite journal|title = Inter-group violence among early Holocene hunter-gatherers of West Turkana, Kenya|journal = Nature|pages = 394–398|volume = 529|issue = 7586|doi = 10.1038/nature16477|first1 = M. Mirazón|last1 = Lahr|first2 = F.|last2 = Rivera|first3 = R. K.|last3 = Power|first4 = A.|last4 = Mounier|first5 = B.|last5 = Copsey|first6 = F.|last6 = Crivellaro|first7 = J. E.|last7 = Edung|first8 = J. M. Maillo|last8 = Fernandez|first9 = C.|last9 = Kiarie|pmid=26791728|year=2016|url = https://www.repository.cam.ac.uk/handle/1810/253726|bibcode = 2016Natur.529..394L|s2cid = 4462435}}</ref> Humans entered the [[Bronze Age]] as they learned to smelt copper into an alloy with tin to make weapons. In Asia where copper-tin ores are rare, this development was delayed until trading in bronze began in the third millennium [[BCE]]. In the Middle East and Southern European regions, the Bronze Age follows the [[Neolithic]] period, but in other parts of the world, the [[Copper Age]] is a transition from Neolithic to the Bronze Age. Although the Iron Age generally follows the Bronze Age, in some areas the [[Iron Age]] intrudes directly on the Neolithic from outside the region, with the exception of Sub-Saharan Africa where it was developed independently.<ref>[http://portal.unesco.org/en/ev.php-URL_ID=3432&URL_DO=DO_PRINTPAGE&URL_SECTION=201.html Iron In Africa: Revising The History : Unesco]. UNESCO. Retrieved 20 November 2014.</ref> The first large-scale use of iron weapons began in Asia Minor around the 14th century BCE and in Central Europe around the 11th century BCE followed by the Middle East (about 1000 BCE) and India and China.<ref name=Tucker2>{{cite book|last1=Tucker|first1=Spencer|title=A Global Chronology of Conflict|date=2010|publisher=ABC-CLIO, LLC|location=Santa Barbara, CA|isbn=978-1-85109-672-5|pages=6–7}}</ref> The [[Assyria]]ns are credited with the introduction of horse cavalry in warfare and the extensive use of iron weapons by 1100 BCE. Assyrians were also the first to use iron-tipped arrows.<ref name=Tucker2 /> {{Further|List of premodern combat weapons}} ===Post-classical technology=== [[Image:Trebuchet1-intransit.jpg|alt=An ink on paper diagram of a trebuchet. A long arm with a spherical cap rests on top of a large square platform. The square platform is supported by four plain cut square beams, which connect to an open undercarriage. Rope hangs between the end of the pole that does not have the cap to the inside of the undercarriage, as far away from the start of the rope as possible. The assembly moves on four wheels attached to the sides of the undercarriage.|thumb|An illustration of a [[trebuchet]] catapult, as described in the ''[[Wujing Zongyao]]'' of 1044.]] The ''[[Wujing Zongyao]]'' (''Essentials of the Military Arts''), written by Zeng Gongliang, Ding Du, and others at the order of [[Emperor Renzong of Song|Emperor Renzong]] around 1043 during the [[Song dynasty]] illustrate the eras focus on advancing intellectual issues and military technology due to the significance of warfare between the Song and the Liao, Jin, and Yuan to their north. The book covers topics of military strategy, training, and the production and employment of advanced weaponry.<ref name=teacher>{{citation|title=Teachers' Guide for Military Technology|date=26 November 2001|page=1|url=http://depts.washington.edu/chinaciv/tg/tmiltech.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://depts.washington.edu/chinaciv/tg/tmiltech.pdf |archive-date=2022-10-09 |url-status=live|access-date=20 November 2014}}</ref> [[Image:Chinese Flamethrower.JPG|alt=An ink on paper diagram of a flametrhower. It consists of a tube with multiple chambers mounted on top of a wooden box with four legs. How exactly the flamethrower would work is not apparent from the diagram alone.|thumb|A Chinese [[flamethrower]] from the ''[[Wujing Zongyao]]'' manuscript of 1044 CE, [[Song dynasty]].]] Advances in military technology aided the [[Song dynasty]] in its defense against hostile neighbors to the north. The [[flamethrower]] found its origins in [[Byzantine]]-era [[Greece]], employing [[Greek fire]] (a chemically complex, highly [[flammable]] petrol fluid) in a device with a [[siphon]] hose by the 7th century.<ref name=pingyu>{{cite book|last1=Ping-Yü|first1=Ho|last2=Gwei-Djen|first2=Lu|last3=Ling|first3=Wang|title=Science and Civilization in China. The Gunpowder Epic|date=1986|publisher=Cambridge U.P.|location=Cambridge|isbn=9780521303583|edition=1. publ.|url=https://books.google.com/books?id=hNcZJ35dIyUC|access-date=20 November 2014}}</ref>{{rp|77}} The earliest reference to Greek Fire in China was made in 917, written by [[Wu Renchen]] in his ''[[Spring and Autumn Annals of the Ten Kingdoms]]''.<ref name=pingyu/>{{rp|80}} In 919, the siphon projector-pump was used to spread the 'fierce fire oil' that could not be doused with water, as recorded by Lin Yu in his {{lang|zh-Latn|Wuyue Beishi}}, hence the first credible Chinese reference to the flamethrower employing the chemical solution of Greek fire (see also [[Pen Huo Qi]]).<ref name=pingyu/>{{rp|81}} Lin Yu mentioned also that the 'fierce fire oil' derived ultimately from one of China's maritime contacts in the 'southern seas', [[Arabia]] {{lang|zh-Latn|Dashiguo}}.<ref name=pingyu/>{{rp|82}} In the [[Battle of Langshan Jiang]] in 919, the naval fleet of the [[Qian Yuanguan|Wenmu King]] from [[Wuyue (Ten Kingdoms)|Wuyue]] defeated a [[Huainan]] army from the [[Wu (Ten Kingdoms)|Wu state]]; Wenmu's success was facilitated by the use of 'fire oil' ('huoyou') to burn their fleet, signifying the first Chinese use of [[gunpowder]] in a battle.<ref name=pingyu/>{{rp|81–83}} The Chinese applied the use of double-[[piston]] [[bellows]] to pump petrol out of a single cylinder (with an upstroke and downstroke), lit at the end by a slow-burning gunpowder match to fire a continuous stream of flame.<ref name=pingyu/>{{rp|82}} This device was featured in description and illustration of the ''[[Wujing Zongyao]]'' military manuscript of 1044.<ref name=pingyu/>{{rp|82}} In the suppression of the [[Southern Tang]] state by 976, early Song naval forces confronted them on the Yangtze River in 975. Southern Tang forces attempted to use flamethrowers against the Song navy, but were accidentally consumed by their own fire when violent winds swept in their direction.<ref name=pingyu/>{{rp|89}} {{Further|Science and technology of the Song dynasty}} Although the destructive effects of gunpowder were described in the earlier [[Tang dynasty]] by a [[Taoism|Daoist]] [[alchemy|alchemist]], the earliest developments of the gun barrel and the projectile-fire [[cannon]] were found in late Song China. The first art depiction of the Chinese '[[fire lance]]' (a combination of a temporary-fire flamethrower and gun) was from a Buddhist mural painting of [[Dunhuang]], dated circa 950.<ref name="needham volume 5 part 7 224 225">Needham, Volume 5, Part 7, 224–225.</ref> These 'fire-lances' were widespread in use by the early 12th century, featuring hollowed bamboo poles as tubes to fire sand particles (to blind and choke), lead pellets, bits of sharp metal and pottery shards, and finally large gunpowder-propelled arrows and [[rocket]] weaponry.<ref name=pingyu/>{{rp|220–221}} Eventually, perishable bamboo was replaced with hollow tubes of cast iron, and so too did the terminology of this new weapon change, from '[[fire lance|fire-spear]]' {{lang|zh-Latn|huo qiang}} to 'fire-tube' {{lang|zh-Latn|huo tong}}.<ref name=pingyu/>{{rp|221}} This ancestor to the gun was complemented by the ancestor to the cannon, what the Chinese referred to since the 13th century as the 'multiple bullets magazine erupter' {{lang|zh-Latn|bai zu lian zhu pao}}, a tube of bronze or cast iron that was filled with about 100 lead balls.<ref name=pingyu/>{{rp|263–264}} The earliest known depiction of a gun is a sculpture from a cave in [[Sichuan]], dating to 1128, that portrays a figure carrying a vase-shaped [[bombard (weapon)|bombard]], firing flames and a cannonball.<ref name=gwei>{{cite journal|first=Lu|last=Gwei-Djen|author2=Joseph Needham |author3=Phan Chi-Hsing |date=July 1988|journal=[[Technology and Culture]]|volume=29|issue=3|pages=594–605|title=The Oldest Representation of a Bombard|doi=10.2307/3105275|jstor=3105275|s2cid=112733319 }}</ref> However, the oldest existent [[archaeological]] discovery of a metal barrel handgun is from the Chinese [[Heilongjiang]] excavation, dated to 1288.<ref name=pingyu/>{{rp|293}} The Chinese also discovered the explosive potential of packing hollowed cannonball shells with gunpowder. Written later by [[Jiao Yu]] in his ''[[Huolongjing]]'' (mid-14th century), this manuscript recorded an earlier Song-era cast-iron cannon known as the 'flying-cloud thunderclap eruptor' (fei yun pi-li pao). The manuscript stated that: As noted before, the change in terminology for these new weapons during the Song period were gradual. The early Song cannons were at first termed the same way as the Chinese [[trebuchet]] [[catapult]]. A later [[Ming dynasty]] scholar known as [[Mao Yuanyi]] would explain this use of terminology and true origins of the cannon in his text of the ''[[Wubei Zhi]]'', written in 1628: The 14th-century ''[[Huolongjing]]'' was also one of the first Chinese texts to carefully describe to the use of explosive [[land mine]]s, which had been used by the late Song Chinese against the Mongols in 1277, and employed by the [[Yuan dynasty]] afterwards. The innovation of the detonated land mine was accredited to one Luo Qianxia in the campaign of defense against the Mongol invasion by [[Kublai Khan]],<ref name=pingyu/>{{rp|192}} Later Chinese texts revealed that the Chinese land mine employed either a rip cord or a motion [[booby trap]] of a pin releasing falling weights that rotated a steel [[wheellock|flint wheel]], which in turn created sparks that ignited the train of [[Fuse (explosives)|fuses]] for the land mines.<ref name=pingyu/>{{rp|199}} Furthermore, the Song employed the earliest known gunpowder-propelled [[rocket]]s in warfare during the late 13th century,<ref name=pingyu/>{{rp|477}} its earliest form being the archaic [[Fire Arrow]]. When the Northern Song capital of Kaifeng fell to the Jurchens in 1126, it was written by Xia Shaozeng that 20,000 fire arrows were handed over to the Jurchens in their conquest. An even earlier Chinese text of the ''[[Wujing Zongyao]]'' ("Collection of the Most Important Military Techniques"), written in 1044 by the Song scholars Zeng Kongliang and Yang Weide, described the use of three spring or triple bow [[ballista|arcuballista]] that fired arrow bolts holding gunpowder packets near the head of the arrow.<ref name=pingyu/>{{rp|154}} Going back yet even farther, the {{lang|zh-Latn|Wu Li Xiao Shi}} (1630, second edition 1664) of Fang Yizhi stated that fire arrows were presented to [[Emperor Taizu of Song]] (r. 960–976) in 960.<ref name=partington>{{cite book|last1=Partington|first1=J.R.|title=A History of Greek Fire and gunpowder|date=1960|publisher=Heffer|location=Cambridge|isbn=9780801859540|page=211|edition=Johns Hopkins paperback|url=https://books.google.com/books?id=sHGdq4rLSTEC|access-date=20 November 2014}}</ref> {{Further|Post-classical history}} ===Modern technology=== ==== Armies ==== [[File:Dardanelles Gun Turkish Bronze 15c.png|thumb|left|200px|The bronze [[Dardanelles Gun]] on display at [[Fort Nelson, Hampshire|Fort Nelson]] in Hampshire. Similar cannons were used by the [[Ottoman Empire|Ottoman Turks]] in the [[Fall of Constantinople|siege of Constantinople]] in 1453.]] [[File:Rocket warfare.jpg|thumb|250px|A painting showing the Mysorean army fighting the British forces with Mysorean rockets.<ref>{{cite news|title=Missiles mainstay of Pak's N-arsenal|url=https://timesofindia.indiatimes.com/india/Missiles-mainstay-of-Paks-N-arsenal/articleshow/2966443.cms|archive-url=https://web.archive.org/web/20120924125020/http://articles.timesofindia.indiatimes.com/2008-04-21/india/27784965_1_cruise-missile-missile-program-hatf-viii|url-status=live|archive-date=24 September 2012|access-date=30 August 2011|work=[[The Times of India]]|date=21 April 2008}}</ref>]] The Islamic [[gunpowder empires]] introduced numerous developed firearms, cannon and small arms. During the period of [[Proto-industrialization]], newly invented weapons were seen to be used in [[Mughal India]]. Rapid development in military technology had a dramatic impact on armies and navies in the industrialized world in 1740–1914.<ref>Max Boot, ''War made new: technology, warfare, and the course of history, 1500 to today'' (Penguin, 2006).</ref> For land warfare, cavalry faded in importance, while infantry became transformed by the use of highly accurate more rapidly loading rifles, and the use of smokeless powder. Machine guns were developed in the 1860s in Europe. [[Rocket artillery]] and the [[Mysorean rockets]] were pioneered by Indian Muslim ruler [[Tipu Sultan]] and the French introduced much more accurate rapid-fire field artillery. Logistics and communications support for land warfare dramatically improved with use of railways and telegraphs. Industrialization provided a base of factories that could be converted to produce munitions, as well as uniforms, tents, wagons and essential supplies. Medical facilities were enlarged and reorganized based on improved hospitals and the creation of modern nursing, typified by [[Florence Nightingale]] in Britain during the [[Crimean War]] of 1854–56.<ref>B.H. Liddell Hart, "Armed Forces in the Art of War: Armies", in J.P.T. Bury, ed., ''The New Cambridge Modern History: volume X: The Zenith of European Power 1830–70'' (1967), 302–330.</ref> ====Naval==== Naval warfare was transformed by many innovations,<ref>Michael Lewis, "Armed Forces in the Art of War: Navies", in J.P.T. Bury, ed., ''The New Cambridge Modern History: Volume X: The Zenith of European Power 1830–70'' (1967), 274–301.</ref> most notably the coal-based steam engine, highly accurate long-range naval guns, heavy steel armour for battleships, mines, and the introduction of the torpedo, followed by the torpedo boat and the destroyer. Coal after 1900 was eventually displaced by more efficient oil, but meanwhile navies with an international scope had to depend on a network of coaling stations to refuel. The British Empire provided them in abundance, as did the French Empire to a lesser extent. War colleges developed, as military theory became a specialty; cadets and senior commanders were taught the theories of Jomini, Clausewitz and Mahan, and engaged in tabletop war games. Around 1900, entirely new innovations such as submarines and airplanes appeared, and were quickly adapted to warfare by 1914. The British [[HMS Dreadnought (1906)|HMS ''Dreadnought'' (1906)]] incorporated so much of the latest technology in weapons, propulsion and armour that it at a stroke made all other battleships obsolescent.<ref>David K. Brown, ''Warrior to Dreadnought: Warship Development 1860–1905''(2003).</ref> ====Organization and finance==== New financial tools were developed to fund the rapidly increasing costs of warfare, such as popular bond sales and income taxes, and the funding of permanent research centers.<ref>Michael Howard, "The armed forces." In F.H. Hinsley, ed. "The new Cambridge modern history: volume XI: 1870–1898" (1962) pp 204–42.</ref><ref>John Sumida, ''In Defence of Naval Supremacy: Finance, Technology, and British Naval Policy 1889–1914'' Naval Institute Press, 2014.</ref> Many 19th century innovations were largely invented and promoted by lone individuals with small teams of assistants, such as [[David Bushnell (inventor)|David Bushnell]] and the submarine, [[John Ericsson]] and the battleship, [[Hiram Maxim]] and the machine gun, and [[Alfred Nobel]] and high explosives. By 1900 the military began to realize that they needed to rely much more heavily on large-scale research centers, which needed government funding.<ref>{{cite journal | last1 = McBride | first1 = William M. | year = 1992 | title = 'The Greatest Patron of Science'?: The Navy-Academia Alliance and US Naval Research, 1896–1923 | journal = Journal of Military History | volume = 56 | issue = 1| pages = 7–34 | doi=10.2307/1985709| jstor = 1985709 }}</ref> They brought in leaders of organized innovation such as [[Thomas Edison]] in the U.S. and chemist [[Fritz Haber]] of the [[Kaiser Wilhelm Institute]] in Germany.<ref>{{cite journal | last1 = Jeffrey | first1 = Thomas E. | year = 2016 | title = 'Commodore' Edison Joins the Navy: Thomas Alva Edison and the Naval Consulting Board | journal = Journal of Military History | volume = 80 | issue = 2| pages = 411–46 }}</ref><ref>L.F. Haber, ''The poisonous cloud: chemical warfare in the First World War'' (Oxford UP, 1986).</ref> ==Postmodern technology== The postmodern stage of military technology emerged in the 1940s, and one with recognition thanks to the high priority given during the war to scientific and engineering research and development regarding nuclear weapons, radar, jet engines, proximity fuses, advanced submarines, aircraft carriers, and other weapons. The high-priority continues into the 21st century.<ref>Harry Bondy, "Postmodernism and the source of military strength in the Anglo West." ''Armed Forces & Society'' 31#1 (2004): 31–61.</ref> It involves the military application of advanced scientific research regarding nuclear weapons, jet engines, ballistic and guided missiles, radar, biological warfare, and the use of electronics, computers and software.<ref>Richard S. Friedman and Bill Gunston, ''Advanced Technology Warfare: A Detailed Study of the Latest Weapons and Techniques for Warfare Today and into the 21st Century'' (1985)</ref><ref>Everett Mendelsohn, Merritt Roe Smith, and Peter Weingart, eds. ''Science, technology and the military'' (Springer Science & Business Media, 2013).</ref> ===Space=== {{Further|Militarisation of space|Space warfare|Space weapon}} During the Cold War, the world's two great superpowers – the [[Soviet Union]] and the United States of America – spent large proportions of their GDP on developing military technologies. The drive to place objects in orbit stimulated space research and started the [[Space Race]]. In 1957, the USSR launched the first [[artificial satellite]], ''[[Sputnik 1]]''. By the end of the 1960s, both countries regularly deployed satellites. [[Spy satellite]]s were used by militaries to take accurate pictures of their rivals' military installations. As time passed the resolution and accuracy of orbital reconnaissance alarmed both sides of the [[Iron Curtain]]. Both the United States and the Soviet Union began to develop [[anti-satellite weapon]]s to blind or destroy each other's satellites. [[Laser]] weapons, [[kamikaze]] style satellites, as well as orbital cannons were researched with varying levels of success. Spy satellites were, and continue to be, used to monitor the dismantling of military assets in accordance with arms control treaties signed between the two superpowers. To use spy satellites in such a manner is often referred to in treaties as "national technical means of verification". The superpowers developed [[ballistic missile]]s to enable them to use [[nuclear weapon]]ry across great distances. As rocket science developed, the range of missiles increased and [[intercontinental ballistic missile]]s (ICBM) were created, which could strike virtually any target on Earth in a timeframe measured in minutes rather than hours or days. To cover large distances ballistic missiles are usually launched into [[sub-orbital spaceflight]]. [[Image:Peacekeeper-missile-testing.jpg|left|200px|thumb|Test of the [[LG-118A Peacekeeper]] missile, each one of which could carry 10 independently targeted [[nuclear warhead]]s along trajectories outside of the [[Earth's atmosphere]].]] As soon as intercontinental missiles were developed, military planners began programmes and strategies to counter their effectiveness. ===Mobilization=== {{See also|Military logistics|Airlift|Sealift}} A significant portion of military technology is about transportation, allowing troops and weaponry to be moved from their origins to the front. Land transport has historically been mainly by foot, land vehicles have usually been used as well, from chariots to tanks. When conducting a battle over a body of water, ships are used. There are historically two main categories of ships: those for transporting troops, and those for attacking other ships. Soon after the invention of aeroplanes, military aviation became a significant component of warfare, though usually as a supplementary role. The two main types of military aircraft are bombers, which attack land- or sea-based targets, and fighters, which attack other aircraft. '''[[Military vehicle]]s''' are land combat or transportation vehicles, excluding rail-based, which are designed for or in significant use by military forces. *[[List of military vehicles]] *[[List of armoured fighting vehicles]] *[[List of tanks]] '''[[Military aircraft]]''' includes any use of aircraft by a country's military, including such areas as transport, training, disaster relief, border patrol, search and rescue, surveillance, surveying, peacekeeping, and (very rarely) aerial warfare. *[[List of aircraft]] *[[List of aircraft weapons]] '''[[Warship]]s''' are watercraft for combat and transportation in and on seas and oceans. * [[Submarine]]s * Complex [[Rigging|masting and sail systems]] found on warships during the [[Age of Sail]] *[[Ship#Types of ships|List of historical ship and boat types]] *[[List of aircraft carriers]] *[[List of submarine classes]] ===Defence=== {{Main|Fortification}} '''Fortifications''' are military constructions and buildings designed for defence in warfare. They range in size and age from the Great Wall of China to a Sangar. *[[List of fortifications]] *[[List of forts]] {{Further|topic=the patented portable armored wall system|McCurdy's Armor}} ===Sensors and communication=== {{See also|Network-centric warfare|Global Information Grid}} Sensors and communication systems are used to detect enemies, coordinate movements of armed forces and guide weaponry. Early systems included flag signaling, telegraph and heliographs. *[[Laser guidance]] *[[Missile guidance]] *[[Norden Bombsight]] *[[Proximity fuse]] *[[Radar]] *[[Satellite guidance]] in guidance weapons ==Future technology== {{Main|Revolution in Military Affairs}} [[File:Atlas back view (drawing).png|thumb|150px|A high-resolution computer drawing of the Atlas robot designed by Boston Dynamics and DARPA, as seen from behind.]] The [[DARPA|Defense Advanced Research Projects Agency]] is an agency of the United States Department of Defense responsible for the development of new technologies for use by the military. DARPA leads the development of military technology in the United States and today, has dozens of ongoing projects; everything from humanoid robots to bullets that can change path before reaching their target. China has a similar agency. ===Emerging territory=== Current militaries continue to invest in new technologies for the future.<ref>{{Cite book|url=http://urn.kb.se/resolve?urn=urn:nbn:se:fhs:diva-8750|title=Technology Forecast 2019 – Military Utility of Future Technologies : A report from seminars at the Swedish Defence University's (SEDU) Military Technology Division|last1=Lundmark|first1=Martin|last2=Andersson|first2=Kent|last3=Bull|first3=Peter|last4=Dansarie|first4=Marcus|date=2019|publisher=Försvarshögskolan (FHS)}}</ref> Such technologies include cognitive radar, 5G cellular networks,<ref>{{Cite book|url=http://urn.kb.se/resolve?urn=urn:nbn:se:fhs:diva-8750|title=Technology Forecast 2019 – Military Utility of Future Technologies : A report from seminars at the Swedish Defence University's (SEDU) Military Technology Division|last1=Lundmark|first1=Martin|last2=Andersson|first2=Kent|last3=Bull|first3=Peter|last4=Dansarie|first4=Marcus|date=2019|publisher=Försvarshögskolan (FHS)}}</ref> microchips, semiconductors, and large scale analytic engines.<ref>{{Cite journal|last=Johnson|first=James|date=21 October 2019|title=The end of military-techno Pax Americana? Washington's strategic responses to Chinese AI-enabled military technology|journal=The Pacific Review|volume=34|issue=3|pages=351–378|doi=10.1080/09512748.2019.1676299|s2cid=211411921|issn=0951-2748|url=http://doras.dcu.ie/25552/}}</ref> Additionally, many militaries seek to improve current laser technology. For example, Israeli Defense Forces utilize laser technology to disable small enemy machinery, but seek to move to more large scale capabilities in the coming years.<ref>{{Cite journal|last=Extance|first=Andy|date=28 May 2015|title=Military technology: Laser weapons get real|journal=Nature News|language=en|volume=521|issue=7553|pages=408–410|doi=10.1038/521408a|pmid=26017426|bibcode=2015Natur.521..408E|doi-access=free}}</ref> Militaries across the world continue to perform research on autonomous technologies which allow for increased troop mobility or replacement of live soldiers.<ref name=":0">{{Cite web|url=https://www.obranaastrategie.cz/en/archive/volume-2017/1-2017/articles/the-requirements-for-future-military-robots-supporting-mobility.html|title=THE REQUIREMENTS FOR FUTURE MILITARY ROBOTS SUPPORTING MOBILITY – Defence & Strategy|first1=Michal|last1=Kopuletý|first2=Ota|last2=Rolenec|website=obranaastrategie.cz|language=en|access-date=6 December 2019}}</ref> Autonomous vehicles and robots are expected to play a role in future conflicts;<ref name=":0" /> this has the potential to decrease loss of life in future warfare. Observers of [[transhumanism]] note high rates of technological terms in military literature, but low rates for explicitly transhuman-related terms.<ref>{{cite journal|last=Evans|first=Woody|year=2019|title=Transhumanism (dot) Mil: A Bibliometric Analysis of Technoprogressive Terms in Military Publications| journal=Library Philosophy and Practice |url=https://digitalcommons.unl.edu/libphilprac/3598/}}</ref> Today's hybrid style of warfare also calls for investments in information technologies. Increased reliance on computer systems has incentivized nations to push for increased efforts at managing large scale networks and having access to large scale data.<ref>{{Cite journal|last1=Burmaoglu|first1=Serhat|last2=Sarıtas|first2=Ozcan|date=1 March 2017|title=Changing characteristics of warfare and the future of Military R&D|journal=Technological Forecasting and Social Change|volume=116|pages=151–161|doi=10.1016/j.techfore.2016.10.062|issn=0040-1625}}</ref> New strategies of cyber and hybrid warfare includes, network attacks, media analysis, and media/ grass-roots campaigns on medias such as blog posts<ref>{{Cite journal|last1=Danyk|first1=Yuriy|last2=Maliarchuk|first2=Tamara|last3=Briggs|first3=Chad|year=2017|title=Hybrid War: High-tech, Information and Cyber Conflicts|journal=Connections|volume=16|issue=2|pages=5–24|issn=1812-1098|jstor=26326478|doi=10.11610/Connections.16.2.01|doi-access=free}}</ref> ====Cyberspace==== In 2011, the US Defense Department declared cyberspace a new domain of warfare; since then DARPA has begun a research project known as "Project X" with the goal of creating new technologies that will enable the government to better understand and map the cyber territory. Ultimately giving the Department of Defense the ability to plan and manage large-scale cyber missions across dynamic network environments.<ref name=pellerin>{{cite news|last1=Pellerin|first1=Cheryl|title=DARPA's Plan X Uses New Technologies to 'See' Cyber Effects|url=https://www.defense.gov/News/News-Stories/id/122455/|access-date=21 November 2014|agency=US Department of Defense|publisher=America Forces Press Service}}</ref> {{Further|Cyberwarfare}} ==See also== {{Commons category|Military technology}} *[[List of military inventions]] *[[List of emerging military technologies]] * ''[[Bellifortis]]'', late medieval treatise on military technology. * [[Materiel]] ==References== {{Reflist|40em}} ==Further reading== * [[Andrade, Tonio]]. ''The Gunpowder Age: China, military innovation, and the rise of the West in world history'' (Princeton UP, 2016). * Black, Jeremy. ''Tools of War '' (2007) covers 50 major inventions. [https://www.amazon.com/Tools-War-Jeremy-Black/dp/1847240127/ excerpt] * Boot, Max. ''War made new: technology, warfare, and the course of history, 1500 to today'' (Penguin, 2006). * {{Cite EB1911|wstitle= Arms and Armour | volume= 2 | pages = 582–590 }} * [[Andrew Cockburn|Cockburn, Andrew]], 'The A-10 saved my ass' (review of [[Andrew F. Krepinevich Jr.]], ''The Origins of Victory: How Disruptive Military Innovation Determines the Fates of Great Powers'', Yale, May 2023, 549 pp., {{ISBN|978 0 300 23409 1}}), ''[[London Review of Books]]'', vol. 46, no.46 (21 March 2024), pp. 39–41. The reviewer gives many examples of the military superiority of granting low-level commanders decision-making initiative, over the most expensive and technologically-advanced weaponry. "Money is lavished on advanced weapons systems whose effectiveness is questionable, and which are vastly expensive to maintain.... At any one time, 40 per cent of the US navy's [[attack submarine]]s are out of commission for repairs.... Krepinevich... prefers to dwell on the urgent necessity of developing increasingly fantastical programmes: [[hypersonics]], [[genetic engineering]], [[quantum computing]] and of course [[AI]].... All the wonders of precision [[targeting (warfare)|targeting]] and comprehensive [[surveillance]] notwithstanding, the [[Houthi]] blockade of the [[Red Sea]] is as effectively disruptive as ever." (p. 41.) * Dupuy, Trevor N. ''The evolution of weapons and warfare'' (1984), 350pp, cover 2000 BC to late 20th century. * Ellis, John. ''The Social History of the Machine Gun'' (1986). * Gabriel, Richard A., and Karen S. Metz. ''From Sumer to Rome: The Military capabilities of ancient armies'' (ABC-CLIO, 1991). * {{cite journal | last1 = Hacker | first1 = Barton | year = 2005 | title = The Machines of War: Western Military Technology 1850–2000 | journal = History & Technology | volume = 21 | issue = 3| pages = 255–300 | doi=10.1080/07341510500198669| s2cid = 144113139 }} * {{cite journal | last1 = Levy | first1 = Jack S | year = 1984 | title = The offensive/defensive balance of military technology: A theoretical and historical analysis | journal = International Studies Quarterly | volume = 28 | issue = 2| pages = 219–238 | doi=10.2307/2600696| jstor = 2600696 }} * McNeill, William H. ''The Pursuit of Power: Technology, Armed Force, and Society since A.D. 1000'' (1984). * Parker, Geoffrey. ''The Military Revolution: Military Innovation and the Rise of the West'' (1988). * Steele, Brett D. and Tamara Dorland. ''Heirs of Archimedes: Science & the Art of War through the Age of Enlightenment'' (2005) 397 pp. {{Weapons}} {{Authority control}} [[Category:Military technology| ]] [[Category:Military equipment]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Cite EB1911
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite news
(
edit
)
Template:Cite web
(
edit
)
Template:Commons category
(
edit
)
Template:Further
(
edit
)
Template:ISBN
(
edit
)
Template:Lang
(
edit
)
Template:Main
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Sidebar with collapsible lists
(
edit
)
Template:Sister project
(
edit
)
Template:Use dmy dates
(
edit
)
Template:War
(
edit
)
Template:Weapons
(
edit
)