Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Min-max theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces}} {{distinguish|Minimax theorem}} {{redirect-distinguish|Variational theorem|variational principle}} {{More citations needed|date=November 2011}} In [[linear algebra]] and [[functional analysis]], the '''min-max theorem''', or '''variational theorem''', or '''Courant–Fischer–Weyl min-max principle''', is a result that gives a variational characterization of [[Eigenvalues and eigenvectors|eigenvalues]] of [[Compact operator on Hilbert space|compact]] Hermitian operators on [[Hilbert spaces]]. It can be viewed as the starting point of many results of similar nature. This article first discusses the finite-dimensional case and its applications before considering compact operators on infinite-dimensional Hilbert spaces. We will see that for compact operators, the proof of the main theorem uses essentially the same idea from the finite-dimensional argument. In the case that the operator is non-Hermitian, the theorem provides an equivalent characterization of the associated [[singular values]]. The min-max theorem can be extended to [[self-adjoint operator]]s that are bounded below. == Matrices == Let {{mvar|A}} be a {{math|''n'' × ''n''}} [[Hermitian matrix]]. As with many other variational results on eigenvalues, one considers the [[Rayleigh quotient|Rayleigh–Ritz quotient]] {{math|''R<sub>A</sub>'' : '''C'''<sup>''n''</sup> \ {0} → '''R'''}} defined by :<math>R_A(x) = \frac{(Ax, x)}{(x,x)}</math> where {{math|(⋅, ⋅)}} denotes the [[dot product|Euclidean inner product]] on {{math|'''C'''<sup>''n''</sup>}}. Equivalently, the Rayleigh–Ritz quotient can be replaced by :<math>f(x) = (Ax, x), \; \|x\| = 1.</math> The Rayleigh quotient of an eigenvector <math>v</math> is its associated eigenvalue <math>\lambda</math> because <math>R_A(v) = (\lambda x, x)/(x, x) = \lambda</math>. For a Hermitian matrix ''A'', the range of the continuous functions ''R<sub>A</sub>''(''x'') and ''f''(''x'') is a compact interval [''a'', ''b''] of the real line. The maximum ''b'' and the minimum ''a'' are the largest and smallest eigenvalue of ''A'', respectively. The min-max theorem is a refinement of this fact. === Min-max theorem === Let <math display="inline">A</math> be Hermitian on an inner product space <math display="inline">V</math> with dimension <math display="inline">n</math>, with spectrum ordered in descending order <math display="inline">\lambda_1 \geq ... \geq \lambda_n</math>. Let <math display="inline">v_1, ..., v_n</math> be the corresponding unit-length orthogonal eigenvectors. Reverse the spectrum ordering, so that <math display="inline">\xi_1 = \lambda_n, ..., \xi_n = \lambda_1</math>. {{Math theorem | name = (Poincaré’s inequality) | note = | math_statement = Let <math display="inline">M</math> be a subspace of <math display="inline">V</math> with dimension <math display="inline">k</math>, then there exists unit vectors <math display="inline">x, y\in M</math>, such that <math display="inline">\langle x, Ax\rangle\leq \lambda_k</math>, and <math display="inline">\langle y, Ay\rangle \geq \xi_k</math>. }} {{Math proof|title=Proof|proof= Part 2 is a corollary, using <math display="inline">-A</math>. <math display="inline">M</math> is a <math display="inline">k</math> dimensional subspace, so if we pick any list of <math display="inline">n-k+1</math> vectors, their span <math display="inline">N := span(v_k, ... v_n)</math> must intersect <math display="inline">M</math> on at least a single line. Take unit <math display="inline">x \in M\cap N</math>. That’s what we need. : <math display="inline">x = \sum_{i=k}^n a_i v_i</math>, since <math display="inline">x\in N</math>. : Since <math display="inline">\sum_{i=k}^n |a_i|^2 = 1</math>, we find <math display="inline">\langle x,Ax \rangle = \sum_{i=k}^n |a_i|^2\lambda_i \leq \lambda_k</math>. }} {{Math theorem | name = min-max theorem | note = | math_statement = <math display="block">\begin{aligned} \lambda_k &=\max _{\begin{array}{c} \mathcal{M} \subset V \\ \operatorname{dim}(\mathcal{M})=k \end{array}} \min _{\begin{array}{c} x \in \mathcal{M} \\ \|x\|=1 \end{array}}\langle x, A x\rangle\\ &=\min _{\begin{array}{c} \mathcal{M} \subset V \\ \operatorname{dim}(\mathcal{M})=n-k+1 \end{array}} \max _{\begin{array}{c} x \in \mathcal{M} \\ \|x\|=1 \end{array}}\langle x, A x\rangle \text{. } \end{aligned}</math> }} {{Math proof|title=Proof|proof= Part 2 is a corollary of part 1, by using <math display="inline">-A</math>. By Poincare’s inequality, <math display="inline">\lambda_k</math> is an upper bound to the right side. By setting <math display="inline">\mathcal M = span(v_1, ... v_k)</math>, the upper bound is achieved. }} Define the [[partial trace]] <math display="inline">tr_V(A)</math> to be the trace of projection of <math display="inline">A</math> to <math display="inline">V</math>. It is equal to <math display="inline">\sum_i v_i^*Av_i</math> given an orthonormal basis of <math display="inline">V</math>. {{Math theorem|name=Wielandt minimax formula|note=<ref name=":0">{{Cite book |last=Tao |first=Terence |title=Topics in random matrix theory |date=2012 |publisher=American Mathematical Society |isbn=978-0-8218-7430-1 |series=Graduate studies in mathematics |location=Providence, R.I}}</ref>{{Pg|page=44}}|math_statement= Let <math display="inline">1 \leq i_1<\cdots<i_k \leq n</math> be integers. Define a partial flag to be a nested collection <math display="inline">V_1 \subset \cdots \subset V_k</math> of subspaces of <math display="inline">\mathbb{C}^n</math> such that <math display="inline">\operatorname{dim}\left(V_j\right)=i_j</math> for all <math display="inline">1 \leq j \leq k</math>. Define the associated Schubert variety <math display="inline">X\left(V_1, \ldots, V_k\right)</math> to be the collection of all <math display="inline">k</math> dimensional subspaces <math display="inline">W</math> such that <math display="inline">\operatorname{dim}\left(W \cap V_j\right) \geq j</math>. <math display="block"> \lambda_{i_1}(A)+\cdots+\lambda_{i_k}(A)=\sup _{V_1, \ldots, V_k} \inf_{W \in X\left(V_1, \ldots, V_k\right)} tr_W(A) </math> }} {{hidden begin|style=width:100%|ta1=center|border=1px #aaa solid|title=Proof}} {{Math proof|title=Proof|proof= The <math display="inline">\leq</math> case. Let <math display="inline">V_{j} = span(e_1, \dots, e_{i_j})</math>, and any <math display="inline">W \in X\left(V_1, \ldots, V_k\right)</math>, it remains to show that <math display="block"> \lambda_{i_1}(A)+\cdots+\lambda_{i_k}(A) \leq tr_W(A) </math> To show this, we construct an orthonormal set of vectors <math display="inline">v_1, \dots, v_k</math> such that <math display="inline">v_j \in V_j \cap W</math>. Then <math display="inline">tr_W(A) \geq \sum_j \langle v_j, Av_j\rangle \geq \lambda_{i_j}(A)</math> Since <math display="inline">dim(V_1 \cap W) \geq 1</math>, we pick any unit <math display="inline">v_1 \in V_1 \cap W</math>. Next, since <math display="inline">dim(V_2 \cap W) \geq 2</math>, we pick any unit <math display="inline">v_2 \in (V_2 \cap W)</math> that is perpendicular to <math display="inline">v_1</math>, and so on. The <math display="inline">\geq</math> case. For any such sequence of subspaces <math display="inline">V_i</math>, we must find some <math display="inline">W \in X\left(V_1, \ldots, V_k\right)</math> such that <math display="block">\lambda_{i_1}(A)+\cdots+\lambda_{i_k}(A) \geq tr_W(A) </math> Now we prove this by induction. The <math display="inline">n=1</math> case is the Courant-Fischer theorem. Assume now <math display="inline">n \geq 2</math>. If <math display="inline">i_1 \geq 2</math>, then we can apply induction. Let <math display="inline">E = span(e_{i_1}, \dots, e_n)</math>. We construct a partial flag within <math display="inline">E</math> from the intersection of <math display="inline">E</math> with <math display="inline">V_1, \dots, V_k</math>. We begin by picking a <math display="inline">(i_k-(i_1-1))</math>-dimensional subspace <math display="inline">W_k' \subset E \cap V_{i_k}</math>, which exists by counting dimensions. This has codimension <math display="inline">(i_1-1)</math> within <math display="inline">V_{i_k}</math>. Then we go down by one space, to pick a <math display="inline">(i_{k-1} - (i_1 - 1))</math>-dimensional subspace <math display="inline">W_{k-1}' \subset W_k \cap V_{i_{k-1}}</math>. This still exists. Etc. Now since <math display="inline">dim(E) \leq n-1</math>, apply the induction hypothesis, there exists some <math display="inline">W \in X(W_1, \dots, W_k)</math> such that <math display="block">\lambda_{i_1 - (i_1-1)}(A|E)+\cdots+\lambda_{i_k- (i_1-1)}(A|E) \geq tr_W(A) </math> Now <math display="inline">\lambda_{i_j - (i_1-1)}(A|E)</math> is the <math display="inline">(i_j-(i_1-1))</math>-th eigenvalue of <math display="inline">A</math> orthogonally projected down to <math display="inline">E</math>. By Cauchy interlacing theorem, <math display="inline">\lambda_{i_j - (i_1-1)}(A|E) \leq \lambda_{i_j}(A)</math>. Since <math display="inline">X(W_1, \dots, W_k)\subset X(V_1, \dots, V_k)</math>, we’re done. If <math display="inline">i_1 = 1</math>, then we perform a similar construction. Let <math display="inline">E = span(e_{2}, \dots, e_n)</math>. If <math display="inline">V_k \subset E</math>, then we can induct. Otherwise, we construct a partial flag sequence <math display="inline">W_2, \dots, W_k</math> By induction, there exists some <math display="inline">W' \in X(W_2, \dots, W_k)\subset X(V_2, \dots, V_k)</math>, such that <math display="block">\lambda_{i_2-1}(A|E)+\cdots+\lambda_{i_k-1}(A|E) \geq tr_{W'}(A)</math> thus<br /> <math display="block">\lambda_{i_2}(A)+\cdots+\lambda_{i_k}(A) \geq tr_{W'}(A)</math> And it remains to find some <math display="inline">v</math> such that <math display="inline">W' \oplus v \in X(V_1, \dots, V_k)</math>. If <math display="inline">V_1 \not\subset W'</math>, then any <math display="inline">v \in V_1 \setminus W'</math> would work. Otherwise, if <math display="inline">V_2 \not\subset W'</math>, then any <math display="inline">v \in V_2 \setminus W'</math> would work, and so on. If none of these work, then it means <math display="inline">V_k \subset E</math>, contradiction. }}{{hidden end}} This has some corollaries:<ref name=":0" />{{Pg|page=44}} {{Math theorem|name=Extremal partial trace|note=|math_statement= <math display="block">\lambda_1(A)+\dots+\lambda_k(A)=\sup_{\operatorname{dim}(V)=k }tr_V(A)</math> <math display="block">\xi_1(A)+\dots+\xi_k(A)=\inf_{\operatorname{dim}(V)=k }tr_V(A)</math> }} {{Math theorem|name=Corollary|note=|math_statement= The sum <math display="inline">\lambda_1(A)+\dots+\lambda_k(A)</math> is a convex function, and <math display="inline">\xi_1(A)+\dots+\xi_k(A)</math> is concave. (Schur-Horn inequality) <math display="block"> \xi_1(A)+\dots+\xi_k(A) \leq a_{i_1,i_1} + \dots + a_{i_k,i_k} \leq \lambda_1(A)+\dots+\lambda_k(A) </math> for any subset of indices. Equivalently, this states that the diagonal vector of <math display="inline">A</math> is majorized by its eigenspectrum. }} {{Math theorem|name=Schatten-norm Hölder inequality|note=|math_statement= Given Hermitian <math display="inline">A, B</math> and Hölder pair <math display="inline">1/p + 1/q = 1</math>, <math display="block">|\operatorname{tr}(A B)| \leq\|A\|_{S^p}\|B\|_{S^q}</math> }} {{hidden begin|style=width:100%|ta1=center|border=1px #aaa solid|title=Proof}} {{Math proof|title=Proof|proof= WLOG, <math display="inline">B</math> is diagonalized, then we need to show <math display="inline"> |\sum_i B_{ii} A_{ii} | \leq \|A \|_{S^p} \|(B_{ii})\|_{l^q} </math> By the standard Hölder inequality, it suffices to show <math display="inline">\|(A_{ii})\|_{l^p}\leq \|A \|_{S^p}</math> By the Schur-Horn inequality, the diagonals of <math display="inline">A</math> are majorized by the eigenspectrum of <math display="inline">A</math>, and since the map <math display="inline">f(x_1, \dots, x_n) = \|x\|_p</math> is symmetric and convex, it is Schur-convex. }}{{hidden end}} === Counterexample in the non-Hermitian case === Let ''N'' be the nilpotent matrix :<math>\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.</math> Define the Rayleigh quotient <math> R_N(x) </math> exactly as above in the Hermitian case. Then it is easy to see that the only eigenvalue of ''N'' is zero, while the maximum value of the Rayleigh quotient is {{math|{{sfrac|1|2}}}}. That is, the maximum value of the Rayleigh quotient is larger than the maximum eigenvalue. == Applications == === Min-max principle for singular values === The [[singular value]]s {''σ<sub>k</sub>''} of a square matrix ''M'' are the square roots of the eigenvalues of ''M''*''M'' (equivalently ''MM*''). An immediate consequence{{Citation needed|reason=claim is unreferenced and maybe suspicious|date=April 2014}} of the first equality in the min-max theorem is: :<math>\sigma_k^{\downarrow} = \max_{S:\dim(S)=k} \min_{x \in S, \|x\| = 1} (M^* Mx, x)^{\frac{1}{2}}=\max_{S:\dim(S)=k} \min_{x \in S, \|x\| = 1} \| Mx \|.</math> Similarly, :<math>\sigma_k^{\downarrow} = \min_{S:\dim(S)=n-k+1} \max_{x \in S, \|x\| = 1} \| Mx \|.</math> Here <math>\sigma_k^{\downarrow}</math> denotes the ''k''<sup>th</sup> entry in the decreasing sequence of the singular values, so that <math>\sigma_1^{\downarrow} \geq \sigma_2^{\downarrow} \geq \cdots </math>. === Cauchy interlacing theorem === {{Main|Poincaré separation theorem}} Let {{mvar|A}} be a symmetric ''n'' × ''n'' matrix. The ''m'' × ''m'' matrix ''B'', where ''m'' ≤ ''n'', is called a '''[[compression (functional analysis)|compression]]''' of {{mvar|A}} if there exists an [[Projection (linear algebra)#Orthogonal projections|orthogonal projection]] ''P'' onto a subspace of dimension ''m'' such that ''PAP*'' = ''B''. The Cauchy interlacing theorem states: :'''Theorem.''' If the eigenvalues of {{mvar|A}} are {{math|''α''<sub>1</sub> ≤ ... ≤ ''α<sub>n</sub>''}}, and those of ''B'' are {{math|''β''<sub>1</sub> ≤ ... ≤ ''β<sub>j</sub>'' ≤ ... ≤ ''β<sub>m</sub>''}}, then for all {{math|''j'' ≤ ''m''}}, ::<math>\alpha_j \leq \beta_j \leq \alpha_{n-m+j}.</math> This can be proven using the min-max principle. Let ''β<sub>i</sub>'' have corresponding eigenvector ''b<sub>i</sub>'' and ''S<sub>j</sub>'' be the ''j'' dimensional subspace {{math|''S<sub>j</sub>'' {{=}} span{''b''<sub>1</sub>, ..., ''b<sub>j</sub>''},}} then :<math>\beta_j = \max_{x \in S_j, \|x\| = 1} (Bx, x) = \max_{x \in S_j, \|x\| = 1} (PAP^*x, x) \geq \min_{S_j} \max_{x \in S_j, \|x\| = 1} (A(P^*x), P^*x) = \alpha_j.</math> According to first part of min-max, {{math|''α<sub>j</sub>'' ≤ ''β<sub>j</sub>''.}} On the other hand, if we define {{math|''S''<sub>''m''−''j''+1</sub> {{=}} span{''b<sub>j</sub>'', ..., ''b<sub>m</sub>''},}} then :<math>\beta_j = \min_{x \in S_{m-j+1}, \|x\| = 1} (Bx, x) = \min_{x \in S_{m-j+1}, \|x\| = 1} (PAP^*x, x)= \min_{x \in S_{m-j+1}, \|x\| = 1} (A(P^*x), P^*x) \leq \alpha_{n-m+j},</math> where the last inequality is given by the second part of min-max. When {{math|''n'' − ''m'' {{=}} 1}}, we have {{math|''α<sub>j</sub>'' ≤ ''β<sub>j</sub>'' ≤ ''α''<sub>''j''+1</sub>}}, hence the name ''interlacing'' theorem. === Lidskii's inequality === {{Main|Trace class#Lidskii's theorem}} {{Math theorem | name = Lidskii inequality | note = | math_statement = If <math display="inline">1 \leq i_1<\cdots<i_k \leq n</math> then <math display="block">\begin{aligned} & \lambda_{i_1}(A+B)+\cdots+\lambda_{i_k}(A+B) \\ & \quad \leq \lambda_{i_1}(A)+\cdots+\lambda_{i_k}(A)+\lambda_1(B)+\cdots+\lambda_k(B) \end{aligned}</math> <math display="block">\begin{aligned} & \lambda_{i_1}(A+B)+\cdots+\lambda_{i_k}(A+B) \\ & \quad \geq \lambda_{i_1}(A)+\cdots+\lambda_{i_k}(A)+\xi_1(B)+\cdots+\xi_k(B) \end{aligned}</math> }} {{hidden begin|style=width:100%|ta1=center|border=1px #aaa solid|title=Proof}} {{Math proof|title=Proof|proof= The second is the negative of the first. The first is by Wielandt minimax. <math display="block">\begin{aligned} & \lambda_{i_1}(A+B)+\cdots+\lambda_{i_k}(A+B) \\ =& \sup_{V_1, \dots, V_k} \inf_{W\in X(V_1, \dots, V_k)}(tr_W(A) + tr_W(B)) \\ =& \sup_{V_1, \dots, V_k} ( \inf_{W\in X(V_1, \dots, V_k)} tr_W(A) + tr_W(B)) \\ \leq& \sup_{V_1, \dots, V_k} ( \inf_{W\in X(V_1, \dots, V_k)} tr_W(A) + (\lambda_1(B)+\cdots+\lambda_k(B))) \\ =& \lambda_{i_1}(A)+\cdots+\lambda_{i_k}(A)+\lambda_1(B)+\cdots+\lambda_k(B) \end{aligned}</math> }}{{hidden end}} Note that <math>\sum_i \lambda_i(A+B) = tr(A+B) = \sum_i \lambda_i(A) + \lambda_i(B) </math>. In other words, <math>\lambda(A+B) - \lambda(A) \preceq \lambda(B)</math> where <math>\preceq</math> means [[majorization]]. By the Schur convexity theorem, we then have {{Math theorem | name = p-Wielandt-Hoffman inequality | note = | math_statement = <math display="inline">\|\lambda(A+B) - \lambda(A)\|_{\ell^p} \leq \|B\|_{S^p}</math> where <math display="inline">\|\cdot\|_{S^p}</math> stands for the p-Schatten norm. }} == Compact operators == Let {{mvar|A}} be a [[Compact operator on Hilbert space|compact]], [[Hermitian]] operator on a Hilbert space ''H''. Recall that the [[spectrum (functional analysis)|spectrum]] of such an operator (the set of eigenvalues) is a set of real numbers whose only possible [[cluster point]] is zero. It is thus convenient to list the positive eigenvalues of {{mvar|A}} as :<math>\cdots \le \lambda_k \le \cdots \le \lambda_1,</math> where entries are repeated with [[Multiplicity (mathematics)|multiplicity]], as in the matrix case. (To emphasize that the sequence is decreasing, we may write <math>\lambda_k = \lambda_k^\downarrow</math>.) When ''H'' is infinite-dimensional, the above sequence of eigenvalues is necessarily infinite. We now apply the same reasoning as in the matrix case. Letting ''S<sub>k</sub>'' ⊂ ''H'' be a ''k'' dimensional subspace, we can obtain the following theorem. :'''Theorem (Min-Max).''' Let {{mvar|A}} be a compact, self-adjoint operator on a Hilbert space {{mvar|H}}, whose positive eigenvalues are listed in decreasing order {{math|... ≤ ''λ<sub>k</sub>'' ≤ ... ≤ ''λ''<sub>1</sub>}}. Then: ::<math>\begin{align} \max_{S_k} \min_{x \in S_k, \|x\| = 1} (Ax,x) &= \lambda_k ^{\downarrow}, \\ \min_{S_{k-1}} \max_{x \in S_{k-1}^{\perp}, \|x\|=1} (Ax, x) &= \lambda_k^{\downarrow}. \end{align}</math> A similar pair of equalities hold for negative eigenvalues. {{Math proof|drop=hidden|proof= Let ''S' '' be the closure of the linear span <math>S' =\operatorname{span}\{u_k,u_{k+1},\ldots\}</math>. The subspace ''S' '' has codimension ''k'' − 1. By the same dimension count argument as in the matrix case, ''S' '' ∩ ''S<sub>k</sub>'' has positive dimension. So there exists ''x'' ∈ ''S' '' ∩ ''S<sub>k</sub>'' with <math>\|x\|=1</math>. Since it is an element of ''S' '', such an ''x'' necessarily satisfy :<math>(Ax, x) \le \lambda_k.</math> Therefore, for all ''S<sub>k</sub>'' :<math>\inf_{x \in S_k, \|x\| = 1}(Ax,x) \le \lambda_k</math> But {{mvar|A}} is compact, therefore the function ''f''(''x'') = (''Ax'', ''x'') is weakly continuous. Furthermore, any bounded set in ''H'' is weakly compact. This lets us replace the infimum by minimum: :<math>\min_{x \in S_k, \|x\| = 1}(Ax,x) \le \lambda_k.</math> So :<math>\sup_{S_k} \min_{x \in S_k, \|x\| = 1}(Ax,x) \le \lambda_k.</math> Because equality is achieved when <math>S_k=\operatorname{span}\{u_1,\ldots,u_k\}</math>, :<math>\max_{S_k} \min_{x \in S_k, \|x\| = 1}(Ax,x) = \lambda_k.</math> This is the first part of min-max theorem for compact self-adjoint operators. Analogously, consider now a {{math|(''k'' − 1)}}-dimensional subspace ''S''<sub>''k''−1</sub>, whose the orthogonal complement is denoted by ''S''<sub>''k''−1</sub><sup>⊥</sup>. If ''S' '' = span{''u''<sub>1</sub>...''u<sub>k</sub>''}, :<math>S' \cap S_{k-1}^{\perp} \ne {0}.</math> So :<math>\exists x \in S_{k-1}^{\perp} \, \|x\| = 1, (Ax, x) \ge \lambda_k.</math> This implies :<math>\max_{x \in S_{k-1}^{\perp}, \|x\| = 1} (Ax, x) \ge \lambda_k</math> where the compactness of ''A'' was applied. Index the above by the collection of ''k-1''-dimensional subspaces gives :<math>\inf_{S_{k-1}} \max_{x \in S_{k-1}^{\perp}, \|x\|=1} (Ax, x) \ge \lambda_k.</math> Pick ''S''<sub>''k''−1</sub> = span{''u''<sub>1</sub>, ..., ''u''<sub>''k''−1</sub>} and we deduce :<math>\min_{S_{k-1}} \max_{x \in S_{k-1}^{\perp}, \|x\|=1} (Ax, x) = \lambda_k.</math> }} == Self-adjoint operators == The min-max theorem also applies to (possibly unbounded) self-adjoint operators.<ref name="teschl">G. Teschl, Mathematical Methods in Quantum Mechanics (GSM 99) https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/schroe.pdf</ref><ref name="lieb-loss">{{cite book |last1=Lieb |last2=Loss |title=Analysis |edition=2nd |series=GSM |volume=14 |location=Providence |publisher=American Mathematical Society |year=2001 |isbn=0-8218-2783-9 }}</ref> Recall the [[essential spectrum]] is the spectrum without isolated eigenvalues of finite multiplicity. Sometimes we have some eigenvalues below the essential spectrum, and we would like to approximate the eigenvalues and eigenfunctions. :'''Theorem (Min-Max).''' Let ''A'' be self-adjoint, and let <math>E_1\le E_2\le E_3\le\cdots</math> be the eigenvalues of ''A'' below the essential spectrum. Then <math>E_n=\min_{\psi_1,\ldots,\psi_{n}}\max\{\langle\psi,A\psi\rangle:\psi\in\operatorname{span}(\psi_1,\ldots,\psi_{n}), \, \| \psi \| = 1\}</math>. If we only have ''N'' eigenvalues and hence run out of eigenvalues, then we let <math>E_n:=\inf\sigma_{ess}(A)</math> (the bottom of the essential spectrum) for ''n>N'', and the above statement holds after replacing min-max with inf-sup. :'''Theorem (Max-Min).''' Let ''A'' be self-adjoint, and let <math>E_1\le E_2\le E_3\le\cdots</math> be the eigenvalues of ''A'' below the essential spectrum. Then <math>E_n=\max_{\psi_1,\ldots,\psi_{n-1}}\min\{\langle\psi,A\psi\rangle:\psi\perp\psi_1,\ldots,\psi_{n-1}, \, \| \psi \| = 1\}</math>. If we only have ''N'' eigenvalues and hence run out of eigenvalues, then we let <math>E_n:=\inf\sigma_{ess}(A)</math> (the bottom of the essential spectrum) for ''n > N'', and the above statement holds after replacing max-min with sup-inf. The proofs<ref name="teschl"/><ref name="lieb-loss"/> use the following results about self-adjoint operators: :'''Theorem.''' Let ''A'' be self-adjoint. Then <math>(A-E)\ge0</math> for <math>E\in\mathbb{R}</math> if and only if <math>\sigma(A)\subseteq[E,\infty)</math>.<ref name="teschl"/>{{rp|77}} :'''Theorem.''' If ''A'' is self-adjoint, then <math>\inf\sigma(A)=\inf_{\psi\in\mathfrak{D}(A),\|\psi\|=1}\langle\psi,A\psi\rangle</math> and <math>\sup\sigma(A)=\sup_{\psi\in\mathfrak{D}(A),\|\psi\|=1}\langle\psi,A\psi\rangle</math>.<ref name="teschl"/>{{rp|77}} == See also == * [[Courant minimax principle]] * [[Max–min inequality]] ==References== {{Reflist}} ==External links and citations to related work== * {{cite arXiv| last1=Fisk|first1=Steve|title=A very short proof of Cauchy's interlace theorem for eigenvalues of Hermitian matrices |date=2005|eprint=math/0502408 }} * {{cite journal|last1=Hwang|first1=Suk-Geun|title=Cauchy's Interlace Theorem for Eigenvalues of Hermitian Matrices |journal=The American Mathematical Monthly | volume=111| date=2004|issue=2 | pages=157–159|doi=10.2307/4145217|jstor=4145217 | url=https://www.jstor.org/stable/4145217}} * {{cite journal|last1=Kline|first1=Jeffery|title=Bordered Hermitian matrices and sums of the Möbius function|journal=Linear Algebra and Its Applications |volume=588| date=2020| pages=224–237|doi=10.1016/j.laa.2019.12.004|doi-access=free}} * {{cite book|last1=Reed |first1=Michael |last2=Simon |first2=Barry | title=Methods of Modern Mathematical Physics IV: Analysis of Operators |year=1978 |isbn= 978-0-08-057045-7 | publisher=Academic Press| url=https://www.elsevier.com/books/iv-analysis-of-operators/reed/978-0-08-057045-7}} {{Functional analysis}} {{Analysis in topological vector spaces}} {{Spectral theory}} [[Category:Articles containing proofs]] [[Category:Operator theory]] [[Category:Spectral theory]] [[Category:Theorems in functional analysis]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Analysis in topological vector spaces
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Distinguish
(
edit
)
Template:Functional analysis
(
edit
)
Template:Hidden begin
(
edit
)
Template:Hidden end
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:Math proof
(
edit
)
Template:Math theorem
(
edit
)
Template:More citations needed
(
edit
)
Template:Mvar
(
edit
)
Template:Pg
(
edit
)
Template:Redirect-distinguish
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)
Template:Spectral theory
(
edit
)