Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mode volume
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Number of bound modes that an optical fiber is capable of supporting}} '''Mode volume''' may refer to figures of merit used either to characterise [[Optical cavity|optical]] and [[Microwave cavity|microwave cavities]] or [[optical fibers]]. ==In electromagnetic cavities== The mode volume (or modal volume) of an optical or microwave cavity is a measure of how concentrated the [[Electromagnetic energy density|electromagnetic energy]] of a single [[Mode (electromagnetism)|cavity mode]] is in space, expressed as an effective volume in which most of the energy associated with an electromagentic mode is confined. Various expressions may be used to estimate this volume:<ref>{{Cite web |title=Calculating the modal volume of a cavity mode |url=https://optics.ansys.com/hc/en-us/articles/360034395374-Calculating-the-modal-volume-of-a-cavity-mode |archive-url=https://web.archive.org/web/20220817165833/https://optics.ansys.com/hc/en-us/articles/360034395374-Calculating-the-modal-volume-of-a-cavity-mode |archive-date=17 August 2022 |access-date=13 September 2024 |website=[[Ansys|Ansys Optics]]}}</ref><ref>{{Cite thesis |last=Kippenberg |first=Tobias Jan August |title=Nonlinear Optics in Ultra-High-Q Whispering-Gallery Optical Microcavities |date=2004 |degree=phd |publisher=California Institute of Technology |url=https://thesis.library.caltech.edu/2487/ |doi=10.7907/t5b6-9r14 |language=en}}</ref> * The volume that would be occupied by the mode if its electromagnetic energy density was constant and equal to its maximum value <math display="block"> V_{m} = \frac{\int \epsilon |E|^{2} dV}{\rm{max}(\epsilon |E|^{2})} \;\;\; \rm{or} \;\;\; V_{m} = \frac{\int (|B|^{2}/\mu) \; dV}{\rm{max}(|B|^{2}/\mu )} </math> * The volume over which the electromagnetic energy density exceeds some threshold (e.g., half the maximum energy density) <math display="block"> V_{m} = \int \left(|E|^{2} > \frac{|E_{max}|^{2}}{2}\right) dV </math> * The volume that would be occupied by the mode if its electromagnetic energy density was constant and equal to a weighted average value that emphasises higher energy densities. <math display="block"> V_{m} = \frac{(\int |E|^{2} dV)^{2}}{\int |E|^{4} dV} \;\;\; \rm{or} \;\;\; V_{m} = \frac{(\int |B|^{2} dV)^{2}}{\int |B|^{4} dV} </math> where <math>E</math> is the [[Electric field|electric field strength]], <math>B</math> is the [[magnetic flux density]], <math>\epsilon</math> is the [[electric permittivity]], <math>\mu</math> denotes the [[Permeability (electromagnetism)|magnetic permeability]], and <math>\max(\cdots)</math> denotes the maximum value of its functional argument. In each definition the integral is over all space and may diverge in leaky cavities where the electromagnetic energy can radiate out to infinity and is thus not is not confined within the cavity volume.<ref>{{Cite web |last=Meldrum |first=A |title=Lesson 5: Whispering Gallery Modes |url=https://sites.ualberta.ca/~ameldrum/science/science5a.html |access-date=2024-12-19 |website=sites.ualberta.ca}}</ref> In this case modifications to the expressions above may be required to give an effective mode volume.<ref>{{Cite journal |last=Kristensen |first=P. T. |last2=Van Vlack |first2=C. |last3=Hughes |first3=S. |date=2012-05-15 |title=Generalized effective mode volume for leaky optical cavities |url=https://opg.optica.org/ol/abstract.cfm?uri=ol-37-10-1649 |journal=Optics Letters |language=en |volume=37 |issue=10 |pages=1649 |doi=10.1364/OL.37.001649 |issn=0146-9592|arxiv=1107.4601 }}</ref> The mode volume of a cavity or resonator is of particular importance in [[cavity quantum electrodynamics]]<ref>{{Cite journal |last=Kimble |first=H. J. |date=1998 |title=Strong Interactions of Single Atoms and Photons in Cavity QED |url=https://iopscience.iop.org/article/10.1238/Physica.Topical.076a00127 |journal=Physica Scripta |language=en |volume=T76 |issue=1 |pages=127 |doi=10.1238/Physica.Topical.076a00127 |issn=0031-8949}}</ref> where it determines the magnitude<ref>{{Cite journal |last=Purcell |first=E. M. |author-link=Edward Mills Purcell |date=1946-06-01 |title=Proceedings of the American Physical Society: B10. Spontaneous Emission Probabilities at Radio Frequencies |url=https://link.aps.org/doi/10.1103/PhysRev.69.674.2 |journal=Physical Review |language=en |volume=69 |issue=11-12 |pages=674β674 |doi=10.1103/PhysRev.69.674.2 |issn=0031-899X|url-access=subscription }}</ref><ref>{{Cite journal |last=Boroditsky |first=M. |last2=Coccioli |first2=R. |last3=Yablonovitch |first3=E. |last4=Rahmat-Samii |first4=Y. |last5=Kim |first5=K.W. |date=1998-12-01 |title=Smallest possible electromagnetic mode volume in a dielectric cavity |url=https://digital-library.theiet.org/content/journals/10.1049/ip-opt_19982468 |journal=IEE Proceedings - Optoelectronics |language=en |volume=145 |issue=6 |pages=391β397 |doi=10.1049/ip-opt:19982468 |issn=1350-2433|url-access=subscription }}</ref><ref>{{Cite web |last=Chen |first=Tom |title=Calculating cavity quality factor, effective mode volume, and Purcell factor in Tidy3D Flexcompute |url=https://www.flexcompute.com/tidy3d/examples/notebooks/CavityFOM/ |access-date=2024-12-19 |website=www.flexcompute.com |language=en}}</ref> of the [[Purcell effect]] and coupling strength between cavity photons and atoms in the cavity.<ref>{{Cite journal |last=Srinivasan |first=Kartik |last2=Borselli |first2=Matthew |last3=Painter |first3=Oskar |last4=Stintz |first4=Andreas |last5=Krishna |first5=Sanjay |date=2006 |title=Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots |url=https://opg.optica.org/oe/viewmedia.cfm?uri=oe-14-3-1094&html=true |journal=Optics Express |language=en |volume=14 |issue=3 |pages=1094 |doi=10.1364/OE.14.001094 |issn=1094-4087|arxiv=physics/0511153 }}</ref><ref>{{Cite journal |last=Yoshie |first=T. |last2=Scherer |first2=A. |last3=Hendrickson |first3=J. |last4=Khitrova |first4=G. |last5=Gibbs |first5=H. M. |last6=Rupper |first6=G. |last7=Ell |first7=C. |last8=Shchekin |first8=O. B. |last9=Deppe |first9=D. G. |date= |title=Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity |url=https://www.nature.com/articles/nature03119 |journal=Nature |language=en |volume=432 |issue=7014 |pages=200β203 |doi=10.1038/nature03119 |issn=0028-0836|url-access=subscription }}</ref> In particular, the Purcell factor is given by : <math>F_{\rm P} = \frac{3}{4\pi^2}\left(\frac{\lambda_{\rm free}}{n}\right)^3 \frac{Q}{V_m}\,,</math> where <math>\lambda_{\rm free}</math> is the [[vacuum]] [[wavelength]], <math>n</math> is the [[refractive index]] of the cavity material (so <math>\lambda_{\rm free}/n</math> is the wavelength inside the cavity), and <math>Q</math> and <math>V_m</math> are the cavity [[quality factor]] and mode volume, respectively. ==In fiber optics== In [[fiber optics]], '''mode volume''' is the number of bound [[Transverse mode|modes]] that an [[optical fiber]] is capable of supporting.<ref>{{Citation |last=Weik |first=Martin H. |title=mode volume |date=2000 |work=Computer Science and Communications Dictionary |pages=1033β1033 |url=https://link.springer.com/10.1007/1-4020-0613-6_11695 |access-date=2024-09-13 |place=Boston, MA |publisher=Springer US |language=en |doi=10.1007/1-4020-0613-6_11695 |isbn=978-0-7923-8425-0|url-access=subscription }}</ref> The mode volume ''M'' is approximately given by <math>V^2 \over 2</math> and <math>{V^2 \over 2} \left({g \over g+2}\right)</math>, respectively for [[step-index profile|step-index]] and [[power-law index profile]] fibers, where ''g'' is the profile parameter, and ''V'' is the [[normalized frequency (fiber optics)|normalized frequency]], ''which must be greater than 5 for this approximation to be valid''. ==See also== *[[Resonator#Electromagnetics|Electromagnetic resonator]] *[[Purcell effect]] *[[Cavity quantum electrodynamics]] *[[Cavity perturbation theory]] *[[Quantum optics]] *[[Equilibrium mode distribution]] *[[Mode scrambler]] *[[Mandrel wrapping]] ==References== {{Reflist}} *{{FS1037C MS188}} [[Category:Fiber optics]] {{optics-stub}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite thesis
(
edit
)
Template:Cite web
(
edit
)
Template:FS1037C MS188
(
edit
)
Template:Optics-stub
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)