Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Monel
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Solid-solution binary alloy of nickel and copper}} {{for|the DC Comics character Mon-El|Lar Gand}} [[File:Guardian Building Art Deco Gate, Detroit.jpg|thumb|The [[Art Deco]] gate in the entrance hall of Detroit's [[Guardian Building]] is made from Monel.<ref name="MetAmHist">{{cite book|chapter-url=https://books.google.com/books?id=J1a3hvykc_0C&pg=PA40|chapter=Monel|pages=39–41|isbn=978-0-16-038073-0|title=Metals in America's historic buildings: uses and preservation treatments|author1=Von Margot Gayle|author2=David W. Look|author3=John G. Waite|publisher=Diane Publishing|year=1992|access-date=2016-10-23|archive-date=2017-02-17|archive-url=https://web.archive.org/web/20170217104028/https://books.google.com/books?id=J1a3hvykc_0C&pg=PA40|url-status=live}}</ref>]] '''Monel''' is a group of [[alloy]]s of [[nickel]] (from 52 to 68%) and [[copper]], with small amounts of iron, manganese, carbon, and silicon. Monel is not a [[cupronickel]] alloy because it has less than 60% copper. Stronger than pure nickel, Monel alloys are resistant to corrosion by many aggressive agents, including rapidly flowing [[seawater]]. They can be fabricated readily by hot- and cold-working, machining, and welding.<ref>{{cite encyclopedia|url= http://www.britannica.com/EBchecked/topic/389109/Monel|title= Monel|encyclopedia= Encyclopædia Britannica|access-date= August 12, 2014|archive-date= August 14, 2014|archive-url= https://web.archive.org/web/20140814010914/http://www.britannica.com/EBchecked/topic/389109/Monel|url-status= live}}</ref> Monel was created in 1905 by [[Robert Crooks Stanley]], who at the time worked at the [[Vale Limited#Pre-Vale history|International Nickel Company]] (Inco).<ref name="kcro89">{{cite news |last1=Cherney |first1=Ken |last2=Orasi |first2=Ron |title=Robert Crooks Stanley (1876-1951) – The Grandfather of the nickel industry (Part 1 of 2) |url=https://republicofmining.com/2009/02/16/robert-crooks-stanley-1876-1951-%E2%80%93-the-grandfather-of-the-nickel-industry-part-1-of-2/ |issue=August 1989 Inco Triangle |publisher=Republic of Mining |date=16 February 2009}}</ref> Monel was named after company president [[Ambrose Monell]], and patented in 1906.<ref>Ambrose Monell {{US patent|811239}} Issue date: Jan 1906</ref> One L was dropped, because family names were not allowed as trademarks at that time.<ref name="MetAmHist"/> The [[trademark]] was registered in May 1921,<ref name="ustm">{{cite news |title=Word Mark: Monel |url=https://tmsearch.uspto.gov/bin/showfield?f=doc&state=4804:vrey86.3.5 |access-date=3 April 2021 |agency=Trademark Electronic Search System (TESS) |publisher=United States Patent and Trademark Office}}</ref> and it is now a property of the [[Special Metals Corporation]]. As an expensive alloy, it tends to be used in applications where it cannot be replaced with cheaper alternatives. For example, in 2015 Monel piping was more than three times as expensive as the equivalent piping made from carbon steel.<ref name=etb>{{cite web|url=http://www.engineeringtoolbox.com/piping-materials-cost-ratios-d_864.html|title=Piping Materials and Cost Ratios|website=www.engineeringtoolbox.com|access-date=2015-04-05|archive-date=2017-12-26|archive-url=https://web.archive.org/web/20171226130329/https://www.engineeringtoolbox.com/piping-materials-cost-ratios-d_864.html|url-status=live}}</ref> ==Properties== Monel is a solid-solution binary alloy.<ref name="mckay36">{{cite book |edition=American Chemical Society, Monograph Series, No. 71 |last1=McKay |first1=Robert James |last2=Worthington |first2=Robert |title=Corrosion Resistance of Metals and Alloys |date=1936 |publisher=Reinhold Publishing Corporation}}</ref> As nickel and copper are mutually soluble in all proportions, it is a single-phase alloy.<ref name="inco279">{{cite book |url=https://www.nickelinstitute.org/media/4675/ni_inco_279_corrosionresisthydrochloric.pdf|publisher=Nickel Institute|title=CORROSION RESISTANCE OF NICKEL AND NICKEL-CONTAINING ALLOYS IN HYDROCHLORIC ACID, HYDROGEN CHLORIDE AND CHLORINE (CEB-3)|year=2020}}</ref> Compared to steel, Monel is very difficult to machine as it work-hardens very quickly. It needs to be turned and worked at slow speeds and low feed rates. It is resistant to corrosion and acids, and some alloys can withstand a fire in pure oxygen. It is commonly used in applications with highly corrosive conditions. Small additions of [[aluminium]] and [[titanium]] form an alloy (K-500) with the same corrosion resistance but with much greater strength due to gamma prime formation on aging. Monel is typically much more expensive than [[stainless steel]]. Monel alloy 400 has a specific gravity of 8.80,<ref>{{cite web|url=http://www.specialmetals.com/documents/Monel%20alloy%20400.pdf|title=Physical properties of Monel 400|access-date=2015-04-21|archive-url=https://web.archive.org/web/20150412000046/http://www.specialmetals.com/documents/Monel%20alloy%20400.pdf|archive-date=2015-04-12|url-status=dead}}</ref> a melting range of 1300–1350 °C, an electrical conductivity of approximately 34% [[International Annealed Copper Standard|IACS]], and (in the annealed state) a hardness of 65 Rockwell B.<ref>{{cite web|url=http://www.makeitfrom.com/data/?material=Monel|title=Monel 400 (NiCu30Fe, 2.4360, N04400, NA13) :: MakeItFrom.com|website=www.makeitfrom.com|access-date=2010-04-19|archive-date=2011-07-03|archive-url=https://web.archive.org/web/20110703132648/http://www.makeitfrom.com/data/?material=Monel|url-status=live}}</ref> Monel alloy 400 is notable for its toughness, which is maintained over a considerable range of temperatures. Monel alloy 400 has excellent mechanical properties at subzero temperatures. Strength and hardness increase with only slight impairment of ductility or impact resistance. The alloy does not undergo a ductile-to-brittle [[Phase transition|transition]] even when cooled to the temperature of liquid hydrogen. This is in marked contrast to many ferrous materials which are brittle at low temperatures despite their increased strength. ==Uses== ===Aerospace applications=== In the 1960s, Monel metal found bulk uses in [[aircraft]] construction, especially in making the frames and skins of [[experimental aircraft|experimental]] [[rocket plane]]s, such as the [[North American X-15]], to resist the great heat generated by [[aerodynamic]] [[friction]] during extremely high speed flight. Monel metal retains its strength at very high temperatures, allowing it to maintain its shape at high atmospheric flight speeds, a trade-off against the increased weight of the parts due to Monel's high [[density]]. Monel is used for safety wiring in aircraft maintenance to ensure that fasteners cannot come undone, usually in high-temperature areas; stainless wire is used in other areas for economy. In addition some fasteners used are made from the alloy. ===Oil production and refining=== Monel is used in the section of [[alkylation unit]]s in direct contact with concentrated hydrofluoric acid. Monel offers exceptional resistance to hydrofluoric acid in all concentrations up to the boiling point. It is perhaps the most resistant of all commonly used engineering alloys. The alloy is also resistant to many forms of sulfuric and [[hydrochloric acid]]s under reducing conditions. ===Marine applications=== Monel's corrosion resistance makes it ideal in applications such as piping systems, pump shafts, seawater valves, trolling wire, and strainer baskets. Some alloys are completely non-magnetic and are used for anchor cable aboard [[minesweeper (ship)|minesweepers]]<ref>{{cite journal |doi= 10.1021/ie50526a033 |title= Nickel and High-Nickel Alloys |year= 1953 |last1= Teeple |first1= H. O. |journal= Industrial & Engineering Chemistry |volume= 45 |issue= 10 |pages= 2215–2232}}</ref><!--https://books.google.com/books?id=N1dYgnS4JPEC&pg=PA9--> or in housings for magnetic-field measurement equipment. In recreational boating, Monel is used for wire to seize shackles for anchor ropes, for water and fuel tanks, and for underwater applications. It is also used for propeller shafts and for keel bolts. On the popular Hobiecat sailboats, Monel rivets<ref>Hobie part number 8010261</ref> are used where strength is needed but stainless steel cannot be used due to corrosion that would result from stainless steel being in contact with the aluminum mast, boom, and frame of the boat in a saltwater environment. Because of the problem of [[electrolytic]] action in salt water (also known as [[Galvanic corrosion]]), in shipbuilding Monel must be carefully insulated from other metals such as steel. ''The New York Times'' on August 12, 1915 published an article about a {{convert|215|foot|adj=on}} yacht, "the first ship that has ever been built with an entirely Monel hull," that "went to pieces" in just six weeks and had to be scrapped, "on account of the disintegration of her bottom by electrical action." The yacht's steel skeleton deteriorated due to electrolytic interaction with the Monel.<ref>{{cite journal |url=https://query.nytimes.com/gst/abstract.html?res=9802EEDD1138E633A25751C1A96E9C946496D6CF |title=New York Times, August 12, 1915: Big Yacht Now Junk After Six Weeks Use |journal=The New York Times |date=August 12, 1915 |access-date=May 13, 2010 |archive-date=May 23, 2009 |archive-url=https://web.archive.org/web/20090523053612/http://query.nytimes.com/gst/abstract.html?res=9802EEDD1138E633A25751C1A96E9C946496D6CF |url-status=live }}</ref> In seabird research, and [[bird banding]] or ringing in particular, Monel has been used to make bird bands or rings for many species, such as [[albatross|albatrosses]], that live in a corrosive sea water environment.<ref>{{cite journal |jstor= 1521133 |title= Band Wear and Band Loss in the Great Lakes Caspian Tern Population and a Generalized Model of Band Loss |first= James P. |last= Ludwig |journal= Colonial Waterbirds |volume= 4 |year= 1981 |pages= 174–18 |doi= 10.2307/1521133}}</ref> ===Musical instruments=== Monel is used as the material for valve pistons or rotors in some higher-quality musical instruments such as trumpets, tubas and French horns. [[RotoSound]] introduced the use of Monel for [[bass guitar|electric bass]] strings in 1962, and these strings have been used by numerous artists, including [[Steve Harris (musician)|Steve Harris]] of [[Iron Maiden]], [[The Who]], [[Sting (musician)|Sting]], [[John Deacon]], [[John Paul Jones (musician)|John Paul Jones]] and the late [[Chris Squire]]. Monel was in use in the early 1930s by other musical string manufacturers, such as [[Gibson Guitar Corporation]], who continue to offer them for mandolin as the [[Sam Bush]] signature set. Also, [[C.F. Martin & Co.]] uses Monel for their Martin Retro acoustic guitar strings. The Pyramid string factory (Germany) produces 'Monel classics' electric guitar strings, wound on a round core. In 2017, D'Addario string company released a line of violin strings using a Monel winding on the D and G string. ===Other=== [[File:Dog tags.jpg|thumb|Identification tags made from Monel]] Good resistance against corrosion by acids and oxygen makes Monel a good material for the chemical industry. Even corrosive fluorides can be handled within Monel apparatus; this was done in an extensive way in the [[uranium enrichment|enrichment of uranium]] in the [[K-25|Oak Ridge Gaseous Diffusion Plant]]. Here most of the larger-diameter tubing for the [[uranium hexafluoride]] was made from Monel.<ref>{{cite journal |doi= 10.1021/ie50578a032 |title= Engineering Design of Oak Ridge Fluoride Volatility Pilot Plant |year= 1958 |last1= Milford |first1= Robert |journal= Industrial & Engineering Chemistry |volume= 50 |issue= 2 |pages= 187–191}}</ref> Regulators for reactive cylinder gases like [[hydrogen chloride]] form another example, where [[PTFE]] is not a suitable option when high delivery pressures are required. These will sometimes include a Monel manifold and taps prior to the regulator that allow the regulator to be flushed with a dry, inert gas after use to further protect the equipment. In the early 20th century, when [[steam power]] was widely used, Monel was advertised as being desirable for use in [[superheater|superheated]] steam systems.<ref name="Inco_monel_advert_1921">{{Citation |author=International Nickel Company |title=Monel advertisement in ''Scientific American'', 1921 |year=1921 |url=https://books.google.com/books?id=Kas0AQAAMAAJ&pg=PA97 |access-date=2015-03-28 |archive-date=2016-04-09 |archive-url=https://web.archive.org/web/20160409020402/https://books.google.com/books?id=Kas0AQAAMAAJ&pg=PA97&img=1&zoom=3&hl=en&sig=ACfU3U33c2GaAbsFMaslN2VDytdQs_oiGg&ci=480,92,479,1209&edge=0 |url-status=live }}</ref> During the world wars, Monel was used for US military [[dog tag (identifier)|dog tags]]. [[File:Brynathyn6.JPG|thumb|Monel doorknobs in the [[Bryn Athyn Cathedral]]]] Monel is often used for kitchen sinks and in the frames of eyeglasses. It has also been used for [[Firebox (steam engine)|firebox]] stays in [[fire-tube boiler]]s. Parts of the [[Clock of the Long Now]], which is intended to run for 10,000 years, are made from Monel because of the corrosion resistance without the use of precious metals.<ref>{{cite journal |title= The Clock of the Long Now — A Reflection |first= Martin |last= Beech |journal= The Journal of the Royal Astronomical Society of Canada |year= 2007 |volume= 101 |issue= 1 |url= http://srac.ca/journal/pdfs/2007-02-lr.pdf |pages= 4–5 |bibcode= 2007JRASC.101....4B |url-status= dead |archive-url= https://web.archive.org/web/20110706203621/http://srac.ca/journal/pdfs/2007-02-lr.pdf |archive-date= 2011-07-06 }}</ref> Monel was used for much of the exposed metal used in the interior of the [[Bryn Athyn Cathedral]] in Pennsylvania, religious seat of the [[General Church of the New Jerusalem]]. This included large decorative screens, doorknobs, etc.<ref name="MetAmHist"/> Monel also has been used as roofing material in buildings such as [[Pennsylvania Station (New York City)#Original structure (1910–1963)|the original Pennsylvania Station]] in New York City.<ref name="MetAmHist"/> [[File:Pennsylvania Station Hawley 1910.jpg|thumb|The greenish roof of New York's [[Pennsylvania Station (1910–1963)|Pennsylvania Station]] was made from Monel]] The 1991–1996 Acura (Honda) NSX came with a key made of Monel.<ref>{{Cite web |url=http://www.nsxprime.com/FAQ/General/nsxkeys.htm |title=NSX Keys |access-date=2011-07-05 |archive-date=2011-09-25 |archive-url=https://web.archive.org/web/20110925231941/http://www.nsxprime.com/FAQ/General/nsxkeys.htm |url-status=live }}</ref> Oilfield applications include using Monel drill collars. Instruments which measure the Earth's magnetic field to obtain a direction are placed in a non-magnetic collar which isolates them from the magnetic pull of drilling tools located above and below the non-magnetic collars. Monel is now rarely used, usually replaced by non-magnetic stainless steels.<ref>{{Cite web|title=Custom Monel Machining Services|url=https://wesltd.com/capabilities/materials/monel/|access-date=2021-02-01|website=WES Engineering Solutions|language=en-US|archive-date=2020-02-23|archive-url=https://web.archive.org/web/20200223040739/http://wesltd.com/capabilities/materials/monel/|url-status=live}}</ref><ref>{{Cite book|last=Mitchell|first=Bill|url=https://books.google.com/books?id=u4bqHAAACAAJ|title=Advanced Oilwell Drilling Engineering Handbook|publisher=Mitchell Engineering|year=1995|isbn=|edition=10th|location=Lakewood, CO|pages=430–431|asin=B0006RMYTW|oclc=46870163|access-date=2021-02-01|archive-date=2021-02-01|archive-url=https://web.archive.org/web/20210201040114/https://www.google.com/books/edition/Advanced_Oil_Well_Drilling_Engineering_H/u4bqHAAACAAJ?hl=en&kptab=overview|url-status=live}}</ref> Monel is also used as a protective binding material on the outside of western style stirrups. Monel is used by [[Arrow Fastener|Arrow Fastener Co., Inc.]] for rustproof T50 staples. Monel has also been used in Kelvinator refrigerators. Monel was used in the Baby Alice Thumb Guard, a 1930s-era anti-thumb-sucking device.<ref>{{cite web|url=http://graphic-design.tjs-labs.com/show-picture?id=1097010675|title=STOP THUMB SUCKING|website=graphic-design.tjs-labs.com|access-date=2014-02-23|archive-url=https://web.archive.org/web/20170215211006/http://graphic-design.tjs-labs.com/show-picture?id=1097010675|archive-date=2017-02-15|url-status=dead}}</ref> Monel is used in motion picture film processing. Monel staple splices are ideal for resisting corrosion from use in continuous-run photochemical tanks. Monel was latterly widely used to manufacture firebox stays in steam locomotive boilers. ==Alloys== Monel is often traded under the ISO standards 6208 (plate, sheet and strip) 9723 (bars) 9724 (wire) 9725 (forgings) and the DIN 17751 (pipes and tubes). {|class="wikitable" ! Trade Name ! [[ASTM]]/[[American Iron and Steel Institute|AISI]] Alloy type ! [[Unified numbering system|UNS]] ! %Cu ! %Al ! %Ti ! %Fe ! %Mn ! %Si ! %Ni |- |Monel 400||B 127, B 164||N04400||28–34|| || ||2.5 max||2.0 max|| 0.5 max |63 min |- |Monel 401|| ||N04401||28–34|| || ||2.5 max||2.0 max|| ||63 min |- |Monel 404|| ||N04404||Rem|| 0.05 max | ||0.5 max||0.1 max|| 0.1 max |52–57 |- |Monel K-500||B 865||N05500||27–33||2.3–3.15||0.35–0.85||2.0 max||1.5 max|| 0.5 max |63 min |- |Monel 405||B 164||N04405||28–34|| || ||2.5 max||2.0 max||0.5 max||63 min |} ===Monel 400=== Monel 400 shows high strength and excellent corrosion resistance in a range of acidic and alkaline environments and is especially suitable for reducing conditions.<ref>{{Cite web|url=http://www.specialmetals.com/assets/smc/documents/alloys/monel/monel-alloy-400.pdf|title=Material Data Sheet Alloy 400|access-date=28 Mar 2019|archive-date=28 March 2019|archive-url=https://web.archive.org/web/20190328204010/http://www.specialmetals.com/assets/smc/documents/alloys/monel/monel-alloy-400.pdf|url-status=live}}</ref> It also has good ductility and thermal conductivity. Monel 400 typically finds application in marine engineering, chemical and hydrocarbon processing, heat exchangers, valves, and pumps. It is covered by the following standards: BS 3075, 3076 NA 13, DTD 204B and ASTM B164.<ref>{{cite web|url=http://www.azom.com/article.aspx?ArticleID=5110|title=Monel K-400 on Azom.com|access-date=August 12, 2014|url-status=dead|archive-url=https://web.archive.org/web/20140812224310/http://www.azom.com/article.aspx?ArticleID=5110|archive-date=August 12, 2014}}</ref> Large use of Monel 400 is made in alkylation units, namely in the reacting section in contact with concentrated hydrofluoric acid. ===Monel 401=== This alloy is designed for use in specialized electric and electronic applications.<ref>{{cite book|url=http://specialmetals.com/documents/Monel%20alloy%20401.pdf|title=MONEL alloy 401 DATASHEET|access-date=2016-03-19|archive-url=https://web.archive.org/web/20170510085610/http://specialmetals.com/documents/Monel%20alloy%20401.pdf|archive-date=2017-05-10|url-status=dead}}</ref> Alloy 401 is readily autogenously welded by the gas-tungsten-arc process. Resistance welding is a very satisfactory method for joining the material. It also exhibits good brazing characteristics. It is covered by standard UNS N04401. ===Monel 404=== Monel 404 alloy is used primarily in specialized electrical and electronic applications.<ref>{{cite book|url=http://specialmetals.com/documents/Monel%20alloy%20404.pdf|title=MONEL alloy 404 DATASHEET|access-date=2016-03-19|archive-url=https://web.archive.org/web/20170510085504/http://specialmetals.com/documents/Monel%20alloy%20404.pdf|archive-date=2017-05-10|url-status=dead}}</ref> The composition of Monel 404 is carefully adjusted to provide a very low [[Curie temperature]], low permeability, and good brazing characteristics. Monel 404 can be welded using common welding techniques and forged but cannot be hot worked. Cold working may be done using standard tooling and soft die materials for better finish. It is covered by standards UNS N04404 and ASTM F96. Monel 404 is used in capsules for transistors and ceramic to metal seals and other things. === Monel 405 === Monel alloy 405, also known as Monel R405, is the free-machining grade of alloy 400.<ref>{{cite web |title=MONEL® Alloy R-405 |url=https://www.specialmetals.com/documents/technical-bulletins/monel-alloy-r-405.pdf |website=Special Metals |access-date=16 January 2023}}</ref> The nickel, carbon, manganese, iron, silicon & copper percent remains the same as alloy 400, but the sulfur is increased from 0.024 max to 0.025-0.060%. Alloy 405 is used chiefly for automatic screw machine stock and is not generally recommended for other applications. The nickel–copper sulfides resulting from the sulfur in its composition act as [[chip breaker]]s, but because of these inclusions the surface finish of the alloy is not as smooth as that of alloy 400. Monel 405 is designated UNS N04405 and is covered by ASME SB-164, ASTM B-164, Federal QQ-N-281, SAE AMS 4674 & 7234, Military MIL-N-894, and NACE MR-01-75. ===Monel 450=== This alloy exhibits good fatigue strength and has relatively high thermal conductivity. It is used for seawater condensers, condenser plates, distiller tubes, evaporator and heat exchanger tubes, and saltwater piping.<ref>{{cite web|url=http://www.espimetals.com/index.php/technical-data/165-nickel-copper-monel-alloys|title=Property of Monel alloys|access-date=April 10, 2015|archive-date=April 15, 2015|archive-url=https://web.archive.org/web/20150415045216/http://www.espimetals.com/index.php/technical-data/165-nickel-copper-monel-alloys|url-status=live}}</ref> ===Monel K-500=== Monel K-500 combines the excellent corrosion resistance characteristic of Monel alloy 400 with the added advantages of greater strength and hardness.<ref>{{Cite web|url=https://www.vdm-metals.com/fileadmin/user_upload/Downloads/Data_Sheets/Data_Sheet_VDM_Alloy_K-500.pdf|title=Material Data Sheet Alloy K-500|access-date=17 November 2017|archive-date=8 January 2017|archive-url=https://web.archive.org/web/20170108122854/http://www.vdm-metals.com/fileadmin/user_upload/Downloads/Data_Sheets/Data_Sheet_VDM_Alloy_K-500.pdf|url-status=live}}</ref><ref>{{cite report|url=http://www.corrotherm.co.uk/resources/MonelK500.pdf|title=MONEL alloy K-500 DATASHEET|date=|access-date=2016-03-19|archive-date=2016-03-31|archive-url=https://web.archive.org/web/20160331120135/http://www.corrotherm.co.uk/resources/MonelK500.pdf|url-status=live}}</ref> The increased properties are obtained by adding aluminum and titanium to the nickel–copper base, and by heating under controlled conditions so that submicroscopic particles of Ni<sub>3</sub> (Ti, Al) are precipitated throughout the matrix.<ref name="thompson60">{{cite book |last1=Thompson |first1=John Fairfield |last2=Beasley |first2=Norman |title=For the Years to Come: A Story of International Nickel of Canada |date=1960 |publisher=Longmans, Green & Co |location=Toronto}}</ref> The corrosion resistance of Monel alloy K-500 is substantially equivalent to that of alloy 400 except that, when in the age-hardened condition, alloy K-500 has a greater tendency toward stress-corrosion cracking in some environments. Monel alloy K-500 has been found to be resistant to a sour-gas environment.<ref>{{cite web |url=https://www.refractorymetal.org/monel-500/ |title=MONEL 500 |website=Advanced Refractory Metals |access-date=Aug 18, 2024}}</ref> The combination of very low corrosion rates in high-velocity sea water and high strength make alloy K-500 particularly suitable for shafts of centrifugal pumps in marine service. In stagnant or slow-moving sea water, fouling may occur followed by pitting, but this pitting slows down after a fairly rapid initial attack. Typical applications for alloy K-500 are pump shafts and impellers, doctor blades and scrapers, and oil-well drill collars, instruments, and electronic components. It is also used in components for power plants, such as steam-turbine blades,<ref name=thompson60/> heat exchangers, and condenser tubes.<ref name=psc1>{{cite web |url=https://powder.samaterials.com/nickel-monel-k-500-powder.html |title=SS5641 Monel K-500 Powder |website=Stanford Advanced Materials |access-date=Aug 11, 2024}}</ref> In the marine industry, it is utilized in components for marine hardware, propeller shafts, pump shafts and seawater valves exposed to harsh marine environments.<ref>{{cite journal |last1=Wang |first1=Qinying |last2=Luo |first2=Xiaofang |year=2023 |title=Stress corrosion cracking behavior and mechanism of aging treated Monel K500 alloy in flowing seawater |journal=Journal of Materials Science |volume=58 |issue=15 |pages=6784–6802 |doi=10.1007/s10853-023-08404-8|bibcode=2023JMatS..58.6784W }}</ref> ===Monel 502=== Monel 502 is a nickel–copper alloy and its UNS no is N05502. This grade also has good creep and oxidation resistance. Monel 502 can be formed in different shapes, and can be machined similar to austenitic stainless steels. ==See also== * [[Hastelloy]] * [[Inconel]] ==References== === Citations === {{Reflist}} === General and cited references === * {{Cite journal |last1=Shoemaker |first1=Lewis E. |last2=Smith |first2=Gaylord D. |date=September 2006 |title=A Century of Monel Metal: 1906–2006 |journal=JOM |volume=58 |issue=9 |pages=22 |bibcode=2006JOM....58i..22S |doi=10.1007/s11837-006-0077-x |s2cid=137476875 }} ==External links== * [http://corrosion-doctors.org/Seawater/monel.htm Monel Corrosion] * [https://web.archive.org/web/20201016005804/https://titaniumnazari.com/monel/ monel - titaniumnazari] {{In lang|fa}} * [https://www.metalstripsolutions.com/monel-400-vs-monel-k-500-strip/ Monel 400 vs. Monel K-500 Strip: Which One Is Best for You?] * [https://nickelalloysolutions.com/difference-between-monel-alloy-400-and-alloy-k-500/ What Is the Difference Between Monel Alloy 400 and Alloy K-500?] * [https://first.mhnsw.au/#record/47739 Wright & Company Archive (Monel distributor in Australia, 1913-1997)] [[Category:Building materials]] [[Category:Copper alloys]] [[Category:Nickel alloys]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite encyclopedia
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite news
(
edit
)
Template:Cite report
(
edit
)
Template:Cite web
(
edit
)
Template:Convert
(
edit
)
Template:Digits
(
edit
)
Template:For
(
edit
)
Template:In lang
(
edit
)
Template:Reflist
(
edit
)
Template:Replace
(
edit
)
Template:Short description
(
edit
)
Template:US patent
(
edit
)