Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Morley's trisector theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|3 intersections of any triangle's adjacent angle trisectors form an equilateral triangle}} [[File:Morley triangle.svg|right|frame|If each vertex angle of the outer triangle is trisected, Morley's trisector theorem states that the purple triangle will be equilateral.]] In [[plane geometry]], '''Morley's trisector theorem''' states that in any [[triangle]], the three points of intersection of the adjacent [[Angle trisection|angle trisectors]] form an [[equilateral triangle]], called the '''first Morley triangle''' or simply the '''Morley triangle'''. The theorem was discovered in 1899 by [[English American|Anglo-American]] [[mathematician]] [[Frank Morley]]. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles. ==Proofs== There are many [[Mathematical proof|proofs]] of Morley's theorem, some of which are very technical.<ref>{{citation|url=http://www.cut-the-knot.org/triangle/Morley/index.shtml|title=Morley's Miracle|publisher=[[Cut-the-knot]]|last=Bogomolny|first=Alexander|authorlink= Alexander Bogomolny |accessdate=2010-01-02}}</ref> Several early proofs were based on delicate [[trigonometry|trigonometric]] calculations. Recent proofs include an [[algebra]]ic proof by {{harvs|first=Alain|last=Connes|authorlink=Alain Connes|txt|year=1998|year2=2004}} extending the theorem to general [[Field (mathematics)|fields]] other than characteristic three, and [[John Horton Conway|John Conway]]'s elementary geometry proof.<ref>{{Citation |last=Bogomolny |first=Alexander |title=J. Conway's proof |url=http://www.cut-the-knot.org/triangle/Morley/conway.shtml |publisher=[[Cut-the-knot]] |access-date=2021-12-03 |authorlink=Alexander Bogomolny}}</ref><ref>{{citation|chapter-url=http://thewe.net/math/conway.pdf|title=Power|editor1-last=Blackwell|editor1-first=Alan|editor2-last=Mackay|editor2-first=David|editor2-link=David J. C. MacKay|year=2006|chapter=The Power of Mathematics|last=Conway|first=John|author-link=John Horton Conway|publisher=Cambridge University Press|accessdate=2010-10-08|pages=36–50|isbn=978-0-521-82377-7}}</ref> The latter starts with an equilateral triangle and shows that a triangle may be built around it which will be [[Similarity (geometry)|similar]] to any selected triangle. Morley's theorem does not hold in [[spherical geometry|spherical]]<ref>[http://lienhard-wimmer.com/applets/dreieck/Morley.html Morley's Theorem in Spherical Geometry], [[Java applet]].</ref> and [[hyperbolic geometry]]. [[File:Morley Proof.svg|thumb|right|480px|Fig 1. Elementary proof of Morley's trisector theorem]] One proof uses the trigonometric identity {{NumBlk|::|<math>\sin(3\theta)=4\sin\theta\sin(60^\circ+\theta)\sin(120^\circ+\theta)</math>|{{EquationRef|1}}}} which, by using of the sum of two angles identity, can be shown to be equal to ::<math>\sin(3\theta)=-4\sin^3\theta+3\sin\theta.</math> The last equation can be verified by applying the sum of two angles identity to the left side twice and eliminating the cosine. Points <math>D, E, F</math> are constructed on <math>\overline{BC}</math> as shown. We have <math>3\alpha+3\beta+3\gamma=180^\circ</math>, the sum of any triangle's angles, so <math>\alpha+\beta+\gamma=60^\circ.</math> Therefore, the angles of triangle <math>XEF</math> are <math>\alpha, (60^\circ+\beta),</math> and <math>(60^\circ+\gamma).</math> From the figure {{NumBlk|::|<math>\sin(60^\circ+\beta)=\frac{\overline{DX}}{\overline{XE}}</math>|{{EquationRef|2}}}} and {{NumBlk|::|<math>\sin(60^\circ+\gamma)=\frac{\overline{DX}}{\overline{XF}}.</math>|{{EquationRef|3}}}} Also from the figure ::<math>\angle{AYC}=180^\circ-\alpha-\gamma=120^\circ+\beta</math> and {{NumBlk|::|<math>\angle{AZB}=120^\circ+\gamma.</math>|{{EquationRef|4}}}} The law of sines applied to triangles <math>AYC</math> and <math>AZB</math> yields {{NumBlk|::|<math>\sin(120^\circ+\beta)=\frac{\overline{AC}}{\overline{AY}}\sin\gamma</math>|{{EquationRef|5}}}} and {{NumBlk|::|<math>\sin(120^\circ+\gamma)=\frac{\overline{AB}}{\overline{AZ}}\sin\beta.</math>|{{EquationRef|6}}}} Express the height of triangle <math>ABC</math> in two ways ::<math>h=\overline{AB} \sin(3\beta)=\overline{AB}\cdot 4\sin\beta\sin(60^\circ+\beta)\sin(120^\circ+\beta)</math> and ::<math>h=\overline{AC} \sin(3\gamma)=\overline{AC}\cdot 4\sin\gamma\sin(60^\circ+\gamma)\sin(120^\circ+\gamma).</math> where equation (1) was used to replace <math>\sin(3\beta)</math> and <math>\sin(3\gamma)</math> in these two equations. Substituting equations (2) and (5) in the <math>\beta</math> equation and equations (3) and (6) in the <math>\gamma</math> equation gives ::<math>h=4\overline{AB}\sin\beta\cdot\frac{\overline{DX}}{\overline{XE}}\cdot\frac{\overline{AC}}{\overline{AY}}\sin\gamma</math> and ::<math>h=4\overline{AC}\sin\gamma\cdot\frac{\overline{DX}}{\overline{XF}}\cdot\frac{\overline{AB}}{\overline{AZ}}\sin\beta</math> Since the numerators are equal ::<math>\overline{XE}\cdot\overline{AY}=\overline{XF}\cdot\overline{AZ}</math> or ::<math>\frac{\overline{XE}}{\overline{XF}}=\frac{\overline{AZ}}{\overline{AY}}.</math> Since angle <math>EXF</math> and angle <math>ZAY</math> are equal and the sides forming these angles are in the same ratio, triangles <math>XEF</math> and <math>AZY</math> are similar. Similar angles <math>AYZ</math> and <math>XFE</math> equal <math>(60^\circ+\gamma)</math>, and similar angles <math>AZY</math> and <math>XEF</math> equal <math>(60^\circ+\beta).</math> Similar arguments yield the base angles of triangles <math>BXZ</math> and <math>CYX.</math> In particular angle <math>BZX</math> is found to be <math>(60^\circ+\alpha)</math> and from the figure we see that ::<math>\angle{AZY}+\angle{AZB}+\angle{BZX}+\angle{XZY}=360^\circ.</math> Substituting yields ::<math>(60^\circ+\beta)+(120^\circ+\gamma)+(60^\circ+\alpha)+\angle{XZY}=360^\circ</math> where equation (4) was used for angle <math>AZB</math> and therefore ::<math>\angle{XZY}=60^\circ.</math> Similarly the other angles of triangle <math>XYZ</math> are found to be <math>60^\circ.</math> ==Side and area== The first Morley triangle has side lengths<ref>{{MathWorld |id= FirstMorleyTriangle|title=First Morley Triangle |access-date=2021-12-03}}</ref> <math display=block> a^\prime=b^\prime=c^\prime=8R\,\sin\tfrac13A\,\sin\tfrac13B\,\sin\tfrac13C, </math> where ''R'' is the [[circumradius]] of the original triangle and ''A, B,'' and ''C'' are the angles of the original triangle. Since the [[area (geometry)|area]] of an equilateral triangle is <math>\tfrac{\sqrt{3}}{4}a'^2,</math> the area of Morley's triangle can be expressed as <math display=block> \text{Area} = 16 \sqrt{3}R^2\, \sin^2\!\tfrac13A\, \sin^2\!\tfrac13B\, \sin^2\!\tfrac13C. </math> ==Morley's triangles== Morley's theorem entails 18 equilateral triangles. The triangle described in the trisector theorem above, called the '''first Morley triangle''', has vertices given in [[trilinear coordinates]] relative to a triangle ''ABC'' as follows: <math display=block>\begin{array}{ccccccc} A \text{-vertex} &=& 1 &:& 2 \cos\tfrac13 C &:& 2 \cos\tfrac13 B \\[5mu] B \text{-vertex} &=& 2 \cos\tfrac13 C &:& 1 &:& 2 \cos\tfrac13 A \\[5mu] C \text{-vertex} &=& 2 \cos\tfrac13 B &:& 2 \cos\tfrac13 A &:& 1 \end{array}</math> Another of Morley's equilateral triangles that is also a central triangle is called the '''second Morley triangle''' and is given by these vertices: <math display=block>\begin{array}{ccccccc} A \text{-vertex} &=& 1 &:& 2 \cos\tfrac13(C - 2\pi) &:& 2 \cos\tfrac13(B - 2\pi) \\[5mu] B \text{-vertex} &=& 2 \cos\tfrac13(C - 2\pi) &:& 1 &:& 2 \cos\tfrac13(A - 2\pi) \\[5mu] C \text{-vertex} &=& 2 \cos\tfrac13(B - 2\pi) &:& 2 \cos\tfrac13(A - 2\pi) &:& 1 \end{array}</math> The third of Morley's 18 equilateral triangles that is also a central triangle is called the '''third Morley triangle''' and is given by these vertices: <math display=block>\begin{array}{ccccccc} A \text{-vertex} &=& 1 &:& 2 \cos\tfrac13(C + 2\pi) &:& 2 \cos\tfrac13(B + 2\pi) \\[5mu] B \text{-vertex} &=& 2 \cos\tfrac13(C + 2\pi) &:& 1 &:& 2 \cos\tfrac13(A + 2\pi) \\[5mu] C \text{-vertex} &=& 2 \cos\tfrac13(B + 2\pi) &:& 2 \cos\tfrac13(A + 2\pi) &:& 1 \end{array}</math> The first, second, and third Morley triangles are pairwise [[Homothetic transformation|homothetic]]. Another homothetic triangle is formed by the three points ''X'' on the circumcircle of triangle ''ABC'' at which the line ''XX''<sup> −1</sup> is tangent to the circumcircle, where ''X''<sup> −1</sup> denotes the [[isogonal conjugate]] of ''X''. This equilateral triangle, called the '''circumtangential triangle''', has these vertices: <math display=block>\begin{array}{lllllll} A \text{-vertex} &=& \phantom{-}\csc\tfrac13(C - B) &:& \phantom{-}\csc\tfrac13(2C + B) &:& -\csc\tfrac13(C + 2B) \\[5mu] B \text{-vertex} &=& -\csc\tfrac13(A + 2C) &:& \phantom{-}\csc\tfrac13(A - C) &:& \phantom{-}\csc\tfrac13(2A + C) \\[5mu] C \text{-vertex} &=& \phantom{-}\csc\tfrac13(2B + A) &:& -\csc\tfrac13(B + 2A) &:& \phantom{-}\csc\tfrac13(B - A) \end{array}</math> A fifth equilateral triangle, also homothetic to the others, is obtained by rotating the circumtangential triangle {{pi}}/6 about its center. Called the '''circumnormal triangle''', its vertices are as follows: <math display=block>\begin{array}{lllllll} A \text{-vertex} &=& \phantom{-}\sec\tfrac13(C - B) &:& -\sec\tfrac13(2C + B) &:& -\sec\tfrac13(C + 2B) \\[5mu] B \text{-vertex} &=& -\sec\tfrac13(A + 2C) &:& \phantom{-}\sec\tfrac13(A - C) &:& -\sec\tfrac13(2A + C) \\[5mu] C \text{-vertex} &=& -\sec\tfrac13(2B + A) &:& -\sec\tfrac13(B + 2A) &:& \phantom{-}\sec\tfrac13(B - A) \end{array}</math> An operation called "[[triangle extraversion|extraversion]]" can be used to obtain one of the 18 Morley triangles from another. Each triangle can be extraverted in three different ways; the 18 Morley triangles and 27 extravert pairs of triangles form the 18 vertices and 27 edges of the [[Pappus graph]].<ref>{{harvtxt|Guy|2007}}.</ref> ==Related triangle centers== The '''Morley center''', ''X''(356), [[centroid]] of the first Morley triangle, is given in [[trilinear coordinates]] by <math display=block> \cos\tfrac13A + 2\cos\tfrac13B\,\cos\tfrac13C \,:\, \cos\tfrac13B + 2\cos\tfrac13C\,\cos\tfrac13A \,:\, \cos\tfrac13C + 2\cos\tfrac13A\,\cos\tfrac13B </math> '''1st Morley–Taylor–Marr center''', ''X''(357): The first Morley triangle is [[perspective (geometry)|perspective]] to triangle {{nobr|<math>\triangle ABC</math>{{sfn|Taylor Marr|1913}} :<ref>Fox, M. D.; and Goggins, J. R. "Morley's diagram generalised", ''[[Mathematical Gazette]]'' 87, November 2003, 453–467.</ref>}}<< the lines each connecting a vertex of the original triangle with the opposite vertex of the Morley triangle [[concurrent lines|concur]] at the point <math display=block> \sec\tfrac13A \,:\, \sec\tfrac13B \,:\, \sec\tfrac13C </math> ==See also== *[[Angle trisection]] *[[Hofstadter points]] *[[Morley centers]] == Notes == {{reflist|2}} == References == *{{citation|first=Alain|last=Connes|authorlink=Alain Connes|url=http://www.numdam.org/item?id=PMIHES_1998__S88__43_0|title=A new proof of Morley's theorem|journal=Publications Mathématiques de l'IHÉS|volume=S88|year=1998|pages=43–46}}. *{{citation|first=Alain|last=Connes|authorlink=Alain Connes|url=http://www.ems-ph.org/journals/newsletter/pdf/2004-12-54.pdf|title=Symmetries|journal=European Mathematical Society Newsletter|volume=54|date=December 2004}}. *{{citation|first1=H. S. M.|last1=Coxeter|authorlink=Coxeter|first2=S. L.|last2=Greitzer|title=Geometry Revisited|publisher=[[The Mathematical Association of America]]|year=1967|lccn=67-20607}} *{{citation|first=Richard L.|last=Francis|url=http://cs.ucmo.edu/~mjms/2002.1/francis9.pdf|title=Modern Mathematical Milestones: Morley's Mystery|journal=Missouri Journal of Mathematical Sciences|volume=14|issue=1|year=2002|doi=10.35834/2002/1401016|doi-access=free}}. *{{citation |last = Guy |first = Richard K. |authorlink = Richard K. Guy |mr = 2290364 |issue = 2 |journal = [[American Mathematical Monthly]] |pages = 97–141 |title = The lighthouse theorem, Morley & Malfatti—a budget of paradoxes |jstor = 27642143 |url = http://www.math.ucalgary.ca/files/publications/3414848.pdf |volume = 114 |year = 2007 |url-status = dead |archiveurl = https://web.archive.org/web/20100401030732/http://www.math.ucalgary.ca/files/publications/3414848.pdf |archivedate = 2010-04-01 |doi=10.1080/00029890.2007.11920398 |s2cid = 46275242 }}. *{{citation|doi=10.2307/2321680|first1=C. O.|last1=Oakley|first2=J. C.|last2=Baker|title=The Morley trisector theorem|journal=[[American Mathematical Monthly]]|volume=85|issue=9 |year=1978|pages=737–745|jstor=2321680|s2cid=56066204 }}. *{{citation|first1=F. Glanville|last1=Taylor|first2=W. L.|last2=Marr|title=The six trisectors of each of the angles of a triangle|journal=Proceedings of the Edinburgh Mathematical Society|volume=33|year=1913–14|pages=119–131|doi=10.1017/S0013091500035100|doi-access=free|ref={{harvid|Taylor Marr|1913}}}}. == External links == * [http://mathworld.wolfram.com/MorleysTheorem.html Morleys Theorem] at MathWorld * [http://www.mathpages.com/home/kmath376/kmath376.htm Morley's Trisection Theorem] at MathPages * [http://demonstrations.wolfram.com/MorleysTheorem/ Morley's Theorem] by Oleksandr Pavlyk, [[The Wolfram Demonstrations Project]]. [[Category:Theorems about triangles]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:EquationRef
(
edit
)
Template:Harvs
(
edit
)
Template:Harvtxt
(
edit
)
Template:MathWorld
(
edit
)
Template:Nobr
(
edit
)
Template:NumBlk
(
edit
)
Template:Pi
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)