Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multi-index notation
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical notation}}{{Calculus|expanded=Multivariable calculus}} '''Multi-index notation''' is a [[mathematical notation]] that simplifies formulas used in [[multivariable calculus]], [[partial differential equation]]s and the theory of [[distribution (mathematics)|distribution]]s, by generalising the concept of an integer [[index notation|index]] to an ordered [[tuple]] of indices. ==Definition and basic properties== An ''n''-dimensional '''multi-index''' is an <math display="inline">n</math>-[[tuple]] :<math>\alpha = (\alpha_1, \alpha_2,\ldots,\alpha_n)</math> of [[non-negative integer]]s (i.e. an element of the ''<math display="inline">n</math>''-[[dimension]]al [[set (mathematics)|set]] of [[natural number]]s, denoted <math>\mathbb{N}^n_0</math>). For multi-indices <math>\alpha, \beta \in \mathbb{N}^n_0</math> and <math>x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n</math>, one defines: ;Componentwise sum and difference :<math>\alpha \pm \beta= (\alpha_1 \pm \beta_1,\,\alpha_2 \pm \beta_2, \ldots, \,\alpha_n \pm \beta_n)</math> ;[[Partial order]] :<math>\alpha \le \beta \quad \Leftrightarrow \quad \alpha_i \le \beta_i \quad \forall\,i\in\{1,\ldots,n\}</math> ;Sum of components (absolute value) :<math>| \alpha | = \alpha_1 + \alpha_2 + \cdots + \alpha_n</math> ;[[Factorial]] :<math>\alpha ! = \alpha_1! \cdot \alpha_2! \cdots \alpha_n!</math> ;[[Binomial coefficient]] :<math>\binom{\alpha}{\beta} = \binom{\alpha_1}{\beta_1}\binom{\alpha_2}{\beta_2}\cdots\binom{\alpha_n}{\beta_n} = \frac{\alpha!}{\beta!(\alpha-\beta)!}</math> ;[[Multinomial coefficient]] :<math display="block">\binom{k}{\alpha} = \frac{k!}{\alpha_1! \alpha_2! \cdots \alpha_n! } = \frac{k!}{\alpha!} </math> where <math>k:=|\alpha|\in\mathbb{N}_0</math>. ;[[Power (mathematics)|Power]] :<math>x^\alpha = x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_n^{\alpha_n}</math>. ;Higher-order [[partial derivative]] :<math display="block">\partial^\alpha = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \ldots \partial_n^{\alpha_n},</math> where <math>\partial_i^{\alpha_i}:=\partial^{\alpha_i} / \partial x_i^{\alpha_i}</math> (see also [[4-gradient]]). Sometimes the notation <math>D^{\alpha} = \partial^{\alpha}</math> is also used.<ref>{{cite book |first=M. |last=Reed |first2=B. |last2=Simon |title=Methods of Modern Mathematical Physics: Functional Analysis I |edition=Revised and enlarged |publisher=Academic Press |location=San Diego |year=1980 |isbn=0-12-585050-6| page=319 }}</ref> ==Some applications== The multi-index notation allows the extension of many formulae from elementary calculus to the corresponding multi-variable case. Below are some examples. In all the following, <math>x,y,h\in\Complex^n</math> (or <math>\R^n</math>), <math>\alpha,\nu\in\N_0^n</math>, and <math>f,g,a_\alpha\colon\Complex^n\to\Complex</math> (or <math>\R^n\to\R</math>). ;[[Multinomial theorem]] :<math> \left( \sum_{i=1}^n x_i\right)^k = \sum_{|\alpha|=k} \binom{k}{\alpha} \, x^\alpha</math> ;[[Multi-binomial theorem]] :<math display="block"> (x+y)^\alpha = \sum_{\nu \le \alpha} \binom{\alpha}{\nu} \, x^\nu y^{\alpha - \nu}.</math> Note that, since {{math|''x'' + ''y''}} is a vector and {{math|''Ξ±''}} is a multi-index, the expression on the left is short for {{math|(''x''<sub>1</sub> + ''y''<sub>1</sub>)<sup>''Ξ±''<sub>1</sub></sup>β―(''x''<sub>''n''</sub> + ''y''<sub>''n''</sub>)<sup>''Ξ±''<sub>''n''</sub></sup>}}. ;[[Leibniz rule (generalized product rule)|Leibniz formula]] :For smooth functions <math display="inline">f</math> and <math display="inline">g</math>,<math display="block">\partial^\alpha(fg) = \sum_{\nu \le \alpha} \binom{\alpha}{\nu} \, \partial^{\nu}f\,\partial^{\alpha-\nu}g.</math> ;[[Taylor series]] :For an [[analytic function]] <math display="inline">f</math> in ''<math display="inline">n</math>'' variables one has <math display="block">f(x+h) = \sum_{\alpha\in\mathbb{N}^n_0} {\frac{\partial^{\alpha}f(x)}{\alpha !}h^\alpha}.</math> In fact, for a smooth enough function, we have the similar '''Taylor expansion''' <math display="block">f(x+h) = \sum_{|\alpha| \le n}{\frac{\partial^{\alpha}f(x)}{\alpha !}h^\alpha}+R_{n}(x,h),</math> where the last term (the remainder) depends on the exact version of Taylor's formula. For instance, for the Cauchy formula (with integral remainder), one gets <math display="block">R_n(x,h)= (n+1) \sum_{|\alpha| =n+1}\frac{h^\alpha}{\alpha !} \int_0^1(1-t)^n\partial^\alpha f(x+th) \, dt.</math> ;General linear [[partial differential operator]] :A formal linear <math display="inline">N</math>-th order partial differential operator in <math display="inline">n</math> variables is written as <math display="block">P(\partial) = \sum_{|\alpha| \le N} {a_{\alpha}(x)\partial^{\alpha}}.</math> ;[[Integration by parts]] :For smooth functions with [[compact support]] in a bounded domain <math>\Omega \subset \R^n</math> one has <math display="block">\int_{\Omega} u(\partial^{\alpha}v) \, dx = (-1)^{|\alpha|} \int_{\Omega} {(\partial^{\alpha}u)v\,dx}.</math> This formula is used for the definition of [[Distribution (mathematics)|distribution]]s and [[weak derivative]]s. ==An example theorem== If <math>\alpha,\beta\in\mathbb{N}^n_0</math> are multi-indices and <math>x=(x_1,\ldots, x_n)</math>, then <math display="block"> \partial^\alpha x^\beta = \begin{cases} \frac{\beta!}{(\beta-\alpha)!} x^{\beta-\alpha} & \text{if}~ \alpha\le\beta,\\ 0 & \text{otherwise.} \end{cases}</math> ===Proof=== The proof follows from the [[power rule]] for the [[differential calculus|ordinary derivative]]; if ''Ξ±'' and ''β'' are in <math display="inline">\{0, 1, 2,\ldots\}</math>, then {{NumBlk||<math display="block"> \frac{d^\alpha}{dx^\alpha} x^\beta = \begin{cases} \frac{\beta!}{(\beta-\alpha)!} x^{\beta-\alpha} & \hbox{if}\,\, \alpha\le\beta, \\ 0 & \hbox{otherwise.} \end{cases}</math>|{{EquationRef|1}}}} Suppose <math>\alpha=(\alpha_1,\ldots, \alpha_n)</math>, <math>\beta=(\beta_1,\ldots, \beta_n)</math>, and <math>x=(x_1,\ldots, x_n)</math>. Then we have that <math display="block">\begin{align}\partial^\alpha x^\beta&= \frac{\partial^{\vert\alpha\vert}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}} x_1^{\beta_1} \cdots x_n^{\beta_n}\\ &= \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} x_1^{\beta_1} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}} x_n^{\beta_n}.\end{align}</math> For each <math display="inline">i</math> in <math display="inline">\{ 1, \ldots , n\}</math>, the function <math>x_i^{\beta_i}</math> only depends on <math>x_i</math>. In the above, each partial differentiation <math>\partial/\partial x_i</math> therefore reduces to the corresponding ordinary differentiation <math>d/dx_i</math>. Hence, from equation ({{EquationNote|1}}), it follows that <math>\partial^\alpha x^\beta</math> vanishes if <math display="inline">\alpha_i > \beta_i</math> for at least one <math display="inline">i</math> in <math display="inline">\{ 1, \ldots , n\}</math>. If this is not the case, i.e., if <math display="inline">\alpha \leq \beta</math> as multi-indices, then <math display="block"> \frac{d^{\alpha_i}}{dx_i^{\alpha_i}} x_i^{\beta_i} = \frac{\beta_i!}{(\beta_i-\alpha_i)!} x_i^{\beta_i-\alpha_i}</math> for each <math>i</math> and the theorem follows. [[Q.E.D.]] == See also == *[[Einstein notation]] *[[Index notation]] *[[Ricci calculus]] == References == {{Reflist}} * Saint Raymond, Xavier (1991). ''Elementary Introduction to the Theory of Pseudodifferential Operators''. Chap 1.1 . CRC Press. {{isbn|0-8493-7158-9}} {{PlanetMath attribution|id=4376|title=multi-index derivative of a power}} {{tensors}} [[Category:Combinatorics]] [[Category:Mathematical notation]] [[Category:Articles containing proofs]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Bigger
(
edit
)
Template:Calculus
(
edit
)
Template:Cite book
(
edit
)
Template:Endflatlist
(
edit
)
Template:EquationNote
(
edit
)
Template:Isbn
(
edit
)
Template:Math
(
edit
)
Template:NumBlk
(
edit
)
Template:PlanetMath attribution
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Startflatlist
(
edit
)
Template:Tensors
(
edit
)