Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multilinear map
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Vector-valued function of multiple vectors, linear in each argument}} {{For|multilinear maps used in cryptography|Cryptographic multilinear map}} {{More citations needed|date=October 2023}} In [[linear algebra]], a '''multilinear map''' is a [[function (mathematics)|function]] of several variables that is [[Linear map|linear]] separately in each variable. More precisely, a multilinear map is a function :<math>f\colon V_1 \times \cdots \times V_n \to W\text{,}</math> where <math>V_1,\ldots,V_n</math> (<math>n\in\mathbb Z_{\ge0}</math>) and <math>W</math> are [[vector space]]s (or [[module (mathematics)|module]]s over a [[commutative ring]]), with the following property: for each <math>i</math>, if all of the variables but <math>v_i</math> are held constant, then <math>f(v_1, \ldots, v_i, \ldots, v_n)</math> is a [[linear function]] of <math>v_i</math>.<ref>{{cite book |author-link=Serge Lang |first=Serge |last=Lang |title=Algebra |chapter=XIII. Matrices and Linear Maps Β§S Determinants |chapter-url=https://books.google.com/books?id=Fge-BwqhqIYC&pg=PA511 |date=2005 |orig-date=2002 |publisher=Springer |edition=3rd |isbn=978-0-387-95385-4 |pages=511β |volume=211 |series=Graduate Texts in Mathematics}}</ref> One way to visualize this is to imagine two [[orthogonal]] vectors; if one of these vectors is scaled by a factor of 2 while the other remains unchanged, the [[cross product]] likewise scales by a factor of two. If both are scaled by a factor of 2, the cross product scales by a factor of <math>2^2</math>. A multilinear map of one variable is a [[linear map]], and of two variables is a [[bilinear map]]. More generally, for any nonnegative integer <math>k</math>, a multilinear map of ''k'' variables is called a '''''k''-linear map'''. If the [[codomain]] of a multilinear map is the [[field of scalars]], it is called a [[multilinear form]]. Multilinear maps and multilinear forms are fundamental objects of study in [[multilinear algebra]]. If all variables belong to the same space, one can consider [[symmetric function|symmetric]], [[Bilinear_form#Symmetric,_skew-symmetric_and_alternating_forms|antisymmetric]] and [[alternating map|alternating]] ''k''-linear maps. The latter two coincide if the underlying [[ring (mathematics)|ring]] (or [[field (mathematics)|field]]) has a [[Characteristic (algebra)|characteristic]] different from two, else the former two coincide. ==Examples== * Any [[bilinear map]] is a multilinear map. For example, any [[inner product]] on a <math>\mathbb R</math>-vector space is a multilinear map, as is the [[cross product]] of vectors in <math>\mathbb{R}^3</math>. * The [[determinant]] of a [[square matrix]] is a multilinear function of the columns (or rows); it is also an [[Alternating form|alternating]] function of the columns (or rows). * If <math>F\colon \mathbb{R}^m \to \mathbb{R}^n</math> is a [[smooth function|''C<sup>k</sup>'' function]], then the <math>k</math>th derivative of <math>F</math> at each point <math>p</math> in its domain can be viewed as a [[symmetric function|symmetric]] <math>k</math>-linear function <math>D^k\!F\colon \mathbb{R}^m\times\cdots\times\mathbb{R}^m \to \mathbb{R}^n</math>.{{Citation needed|date=October 2023}} ==Coordinate representation== Let :<math>f\colon V_1 \times \cdots \times V_n \to W\text{,}</math> be a multilinear map between [[finite-dimensional]] vector spaces, where <math>V_i\!</math> has dimension <math>d_i\!</math>, and <math>W\!</math> has dimension <math>d\!</math>. If we choose a [[basis (linear algebra)|basis]] <math>\{\textbf{e}_{i1},\ldots,\textbf{e}_{id_i}\}</math> for each <math>V_i\!</math> and a basis <math>\{\textbf{b}_1,\ldots,\textbf{b}_d\}</math> for <math>W\!</math> (using bold for vectors), then we can define a collection of scalars <math>A_{j_1\cdots j_n}^k</math> by :<math>f(\textbf{e}_{1j_1},\ldots,\textbf{e}_{nj_n}) = A_{j_1\cdots j_n}^1\,\textbf{b}_1 + \cdots + A_{j_1\cdots j_n}^d\,\textbf{b}_d.</math> Then the scalars <math>\{A_{j_1\cdots j_n}^k \mid 1\leq j_i\leq d_i, 1 \leq k \leq d\}</math> completely determine the multilinear function <math>f\!</math>. In particular, if :<math>\textbf{v}_i = \sum_{j=1}^{d_i} v_{ij} \textbf{e}_{ij}\!</math> for <math>1 \leq i \leq n\!</math>, then :<math>f(\textbf{v}_1,\ldots,\textbf{v}_n) = \sum_{j_1=1}^{d_1} \cdots \sum_{j_n=1}^{d_n} \sum_{k=1}^{d} A_{j_1\cdots j_n}^k v_{1j_1}\cdots v_{nj_n} \textbf{b}_k.</math> ==Example== Let's take a trilinear function :<math>g\colon R^2 \times R^2 \times R^2 \to R, </math> where {{math|1=''V<sub>i</sub>'' = ''R''<sup>2</sup>, ''d<sub>i</sub>'' = 2, ''i'' = 1,2,3}}, and {{math|1=''W'' = ''R'', ''d'' = 1}}. A basis for each {{mvar|V<sub>i</sub>}} is <math>\{\textbf{e}_{i1},\ldots,\textbf{e}_{id_i}\} = \{\textbf{e}_{1}, \textbf{e}_{2}\} = \{(1,0), (0,1)\}.</math> Let :<math>g(\textbf{e}_{1i},\textbf{e}_{2j},\textbf{e}_{3k}) = f(\textbf{e}_{i},\textbf{e}_{j},\textbf{e}_{k}) = A_{ijk},</math> where <math>i,j,k \in \{1,2\}</math>. In other words, the constant <math>A_{i j k}</math> is a function value at one of the eight possible triples of basis vectors (since there are two choices for each of the three <math>V_i</math>), namely: :<math> \{\textbf{e}_1, \textbf{e}_1, \textbf{e}_1\}, \{\textbf{e}_1, \textbf{e}_1, \textbf{e}_2\}, \{\textbf{e}_1, \textbf{e}_2, \textbf{e}_1\}, \{\textbf{e}_1, \textbf{e}_2, \textbf{e}_2\}, \{\textbf{e}_2, \textbf{e}_1, \textbf{e}_1\}, \{\textbf{e}_2, \textbf{e}_1, \textbf{e}_2\}, \{\textbf{e}_2, \textbf{e}_2, \textbf{e}_1\}, \{\textbf{e}_2, \textbf{e}_2, \textbf{e}_2\}. </math> Each vector <math>\textbf{v}_i \in V_i = R^2</math> can be expressed as a linear combination of the basis vectors :<math>\textbf{v}_i = \sum_{j=1}^{2} v_{ij} \textbf{e}_{ij} = v_{i1} \times \textbf{e}_1 + v_{i2} \times \textbf{e}_2 = v_{i1} \times (1, 0) + v_{i2} \times (0, 1).</math> The function value at an arbitrary collection of three vectors <math>\textbf{v}_i \in R^2</math> can be expressed as :<math>g(\textbf{v}_1,\textbf{v}_2, \textbf{v}_3) = \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} A_{i j k} v_{1i} v_{2j} v_{3k},</math> or in expanded form as :<math> \begin{align} g((a,b),(c,d)&, (e,f)) = ace \times g(\textbf{e}_1, \textbf{e}_1, \textbf{e}_1) + acf \times g(\textbf{e}_1, \textbf{e}_1, \textbf{e}_2) \\ &+ ade \times g(\textbf{e}_1, \textbf{e}_2, \textbf{e}_1) + adf \times g(\textbf{e}_1, \textbf{e}_2, \textbf{e}_2) + bce \times g(\textbf{e}_2, \textbf{e}_1, \textbf{e}_1) + bcf \times g(\textbf{e}_2, \textbf{e}_1, \textbf{e}_2) \\ &+ bde \times g(\textbf{e}_2, \textbf{e}_2, \textbf{e}_1) + bdf \times g(\textbf{e}_2, \textbf{e}_2, \textbf{e}_2). \end{align} </math> ==Relation to tensor products== There is a [[natural transformation|natural]] one-to-one correspondence between multilinear maps :<math>f\colon V_1 \times \cdots \times V_n \to W\text{,}</math> and linear maps :<math>F\colon V_1 \otimes \cdots \otimes V_n \to W\text{,}</math> where <math>V_1 \otimes \cdots \otimes V_n\!</math> denotes the [[tensor product]] of <math>V_1,\ldots,V_n</math>. The relation between the functions <math>f</math> and <math>F</math> is given by the formula :<math>f(v_1,\ldots,v_n)=F(v_1\otimes \cdots \otimes v_n).</math> ==Multilinear functions on ''n''×''n'' matrices== One can consider multilinear functions, on an {{math|''n''×''n''}} matrix over a [[commutative ring]] {{mvar|K}} with identity, as a function of the rows (or equivalently the columns) of the matrix. Let {{math|''A''}} be such a matrix and {{math|''a<sub>i</sub>'', 1 β€ ''i'' β€ ''n''}}, be the rows of {{math|''A''}}. Then the multilinear function {{math|''D''}} can be written as :<math>D(A) = D(a_{1},\ldots,a_{n}),</math> satisfying :<math>D(a_{1},\ldots,c a_{i} + a_{i}',\ldots,a_{n}) = c D(a_{1},\ldots,a_{i},\ldots,a_{n}) + D(a_{1},\ldots,a_{i}',\ldots,a_{n}).</math> If we let <math>\hat{e}_j</math> represent the {{mvar|j}}th row of the identity matrix, we can express each row {{math|''a<sub>i</sub>''}} as the sum :<math>a_{i} = \sum_{j=1}^n A(i,j)\hat{e}_{j}.</math> Using the multilinearity of {{math|''D''}} we rewrite {{math|''D''(''A'')}} as :<math> D(A) = D\left(\sum_{j=1}^n A(1,j)\hat{e}_{j}, a_2, \ldots, a_n\right) = \sum_{j=1}^n A(1,j) D(\hat{e}_{j},a_2,\ldots,a_n). </math> Continuing this substitution for each {{math|''a<sub>i</sub>''}} we get, for {{math|1 β€ ''i'' β€ ''n''}}, :<math> D(A) = \sum_{1\le k_1 \le n} \ldots \sum_{1\le k_i \le n} \ldots \sum_{1\le k_n \le n} A(1,k_{1})A(2,k_{2})\dots A(n,k_{n}) D(\hat{e}_{k_{1}},\dots,\hat{e}_{k_{n}}). </math> Therefore, {{math|''D''(''A'')}} is uniquely determined by how {{mvar|D}} operates on <math>\hat{e}_{k_{1}},\dots,\hat{e}_{k_{n}}</math>. ==Example== In the case of 2×2 matrices, we get :<math> D(A) = A_{1,1}A_{1,2}D(\hat{e}_1,\hat{e}_1) + A_{1,1}A_{2,2}D(\hat{e}_1,\hat{e}_2) + A_{1,2}A_{2,1}D(\hat{e}_2,\hat{e}_1) + A_{1,2}A_{2,2}D(\hat{e}_2,\hat{e}_2), \, </math> where <math>\hat{e}_1 = [1,0]</math> and <math>\hat{e}_2 = [0,1]</math>. If we restrict <math>D</math> to be an alternating function, then <math>D(\hat{e}_1,\hat{e}_1) = D(\hat{e}_2,\hat{e}_2) = 0</math> and <math>D(\hat{e}_2,\hat{e}_1) = -D(\hat{e}_1,\hat{e}_2) = -D(I)</math>. Letting <math>D(I) = 1</math>, we get the determinant function on 2×2 matrices: :<math> D(A) = A_{1,1}A_{2,2} - A_{1,2}A_{2,1} .</math> ==Properties== * A multilinear map has a value of zero whenever one of its arguments is zero. ==See also== * [[Algebraic form]] * [[Multilinear form]] * [[Homogeneous polynomial]] * [[Homogeneous function]] * [[Tensor]]s ==References== <references/> [[Category:Multilinear algebra]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:For
(
edit
)
Template:Math
(
edit
)
Template:More citations needed
(
edit
)
Template:Mvar
(
edit
)
Template:Short description
(
edit
)