Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multiplicative function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Function equal to the product of its values on coprime factors}} {{hatnote|Outside number theory, the term '''multiplicative function''' is usually used for [[completely multiplicative function]]s. This article discusses number theoretic multiplicative functions.}} In [[number theory]], a '''multiplicative function''' is an [[arithmetic function]] <math>f</math> of a positive [[integer]] <math>n</math> with the property that <math>f(1)=1</math> and <math display="block">f(ab) = f(a)f(b)</math> whenever <math>a</math> and <math>b</math> are [[coprime]]. An arithmetic function is said to be '''[[completely multiplicative function|completely multiplicative]]''' (or '''totally multiplicative''') if <math>f(1)=1</math> and <math>f(ab) = f(a)f(b)</math> holds ''for all'' positive integers <math>a</math> and <math>b</math>, even when they are not coprime. == Examples == Some multiplicative functions are defined to make formulas easier to write: * <math>1(n)</math>: the constant function defined by <math>1(n)=1</math> * <math>\operatorname{Id}(n)</math>: the [[identity function]], defined by <math>\operatorname{Id}(n)=n</math> * <math>\operatorname{Id}_k(n)</math>: the power functions, defined by <math>\operatorname{Id}_k(n)=n^k</math> for any complex number <math>k</math>. As special cases we have ** <math>\operatorname{Id}_0(n)=1(n)</math>, and ** <math>\operatorname{Id}_1(n)=\operatorname{Id}(n)</math>. * <math>\varepsilon(n)</math>: the function defined by <math>\varepsilon(n)=1</math> if <math>n=1</math> and <math>0</math> otherwise; this is the [[unit function]], so called because it is the multiplicative identity for [[Dirichlet convolution]]. Sometimes written as <math>u(n)</math>; not to be confused with <math>\mu(n)</math>. * <math>\lambda(n)</math>: the [[Liouville function]], <math>\lambda(n)=(-1)^{\Omega(n)}</math>, where <math>\Omega(n)</math> is the total number of primes (counted with multiplicity) dividing <math>n</math> The above functions are all completely multiplicative. * <math>1_C(n)</math>: the [[indicator function]] of the set <math>C\subseteq \Z</math>. This function is multiplicative precisely when <math>C</math> is closed under multiplication of coprime elements. There are also other sets (not closed under multiplication) that give rise to such functions, such as the set of [[square-free]] numbers. Other examples of multiplicative functions include many functions of importance in number theory, such as: * <math>\gcd(n,k)</math>: the [[greatest common divisor]] of <math>n</math> and <math>k</math>, as a function of <math>n</math>, where <math>k</math> is a fixed integer * <math>\varphi(n)</math>: [[Euler's totient function]], which counts the positive integers [[coprime]] to (but not bigger than) <math>n</math> * <math>\mu(n)</math>: the [[Möbius function]], the parity (<math>-1</math> for odd, <math>+1</math> for even) of the number of prime factors of [[square-free integer|square-free]] numbers; <math>0</math> if <math>n</math> is not square-free * <math>\sigma_k(n)</math>: the [[divisor function]], which is the sum of the <math>k</math>-th powers of all the positive divisors of <math>n</math> (where <math>k</math> may be any [[complex number]]). As special cases we have ** <math>\sigma_0(n)=d(n)</math>, the number of positive [[divisor]]s of <math>n</math>, ** <math>\sigma_1(n)=\sigma(n)</math>, the sum of all the positive divisors of <math>n</math>. *<math>\sigma^*_k(n)</math>: the sum of the <math>k</math>-th powers of all [[unitary divisor]]s of <math>n</math> ::<math>\sigma_k^*(n) \,=\!\!\sum_{d \,\mid\, n \atop \gcd(d,\,n/d)=1} \!\!\! d^k</math> * <math>a(n)</math>: the number of non-isomorphic [[abelian groups]] of order <math>n</math> * <math>\gamma(n)</math>, defined by <math>\gamma(n) = (-1)^{\omega(n)}</math>, where the [[additive function]] <math>\omega(n)</math> is the number of distinct primes dividing <math>n</math> * <math>\tau(n)</math>: the [[Ramanujan tau function]] * All [[Dirichlet character]]s are completely multiplicative functions, for example ** <math>(n/p)</math>, the [[Legendre symbol]], considered as a function of <math>n</math> where <math>p</math> is a fixed [[prime number]] An example of a non-multiplicative function is the arithmetic function <math>r_2(n)</math>, the number of representations of <math>n</math> as a sum of squares of two integers, [[positive number|positive]], [[negative number|negative]], or [[0 (number)|zero]], where in counting the number of ways, reversal of order is allowed. For example: {{block indent|em=1.2|text=1 = 1<sup>2</sup> + 0<sup>2</sup> = (−1)<sup>2</sup> + 0<sup>2</sup> = 0<sup>2</sup> + 1<sup>2</sup> = 0<sup>2</sup> + (−1)<sup>2</sup>}} and therefore <math>r_2(1)=4\neq 1</math>. This shows that the function is not multiplicative. However, <math>r_2(n)/4</math> is multiplicative. In the [[On-Line Encyclopedia of Integer Sequences]], sequences of values of a multiplicative function have the keyword "mult".<ref>{{cite web | url=http://oeis.org/search?q=keyword:mult | title=Keyword:mult - OEIS }}</ref> See [[arithmetic function]] for some other examples of non-multiplicative functions. == Properties == A multiplicative function is completely determined by its values at the powers of [[prime number]]s, a consequence of the [[fundamental theorem of arithmetic]]. Thus, if ''n'' is a product of powers of distinct primes, say ''n'' = ''p''<sup>''a''</sup> ''q''<sup>''b''</sup> ..., then ''f''(''n'') = ''f''(''p''<sup>''a''</sup>) ''f''(''q''<sup>''b''</sup>) ... This property of multiplicative functions significantly reduces the need for computation, as in the following examples for ''n'' = 144 = 2<sup>4</sup> · 3<sup>2</sup>: <math display="block">d(144) = \sigma_0(144) = \sigma_0(2^4) \, \sigma_0(3^2) = (1^0 + 2^0 + 4^0 + 8^0 + 16^0)(1^0 + 3^0 + 9^0) = 5 \cdot 3 = 15</math> <math display="block">\sigma(144) = \sigma_1(144) = \sigma_1(2^4) \, \sigma_1(3^2) = (1^1 + 2^1 + 4^1 + 8^1 + 16^1)(1^1 + 3^1 + 9^1) = 31 \cdot 13 = 403</math> <math display="block">\sigma^*(144) = \sigma^*(2^4) \, \sigma^*(3^2) = (1^1 + 16^1)(1^1 + 9^1) = 17 \cdot 10 = 170</math> Similarly, we have: <math display="block">\varphi(144) = \varphi(2^4) \, \varphi(3^2) = 8 \cdot 6 = 48</math> In general, if ''f''(''n'') is a multiplicative function and ''a'', ''b'' are any two positive integers, then {{block indent|em=1.2|text=''f''(''a'') · ''f''(''b'') = ''f''([[greatest common divisor|gcd]](''a'',''b'')) · ''f''([[least common multiple|lcm]](''a'',''b'')).}} Every completely multiplicative function is a [[homomorphism]] of [[monoid]]s and is completely determined by its restriction to the prime numbers. == Convolution == If ''f'' and ''g'' are two multiplicative functions, one defines a new multiplicative function <math>f * g</math>, the ''[[Dirichlet convolution]]'' of ''f'' and ''g'', by <math display="block"> (f \, * \, g)(n) = \sum_{d|n} f(d) \, g \left( \frac{n}{d} \right)</math> where the sum extends over all positive divisors ''d'' of ''n''. With this operation, the set of all multiplicative functions turns into an [[abelian group]]; the [[identity element]] is ''ε''. Convolution is commutative, associative, and distributive over addition. Relations among the multiplicative functions discussed above include: * <math>\mu * 1 = \varepsilon</math> (the [[Möbius inversion formula]]) * <math>(\mu \operatorname{Id}_k) * \operatorname{Id}_k = \varepsilon</math> (generalized Möbius inversion) * <math>\varphi * 1 = \operatorname{Id}</math> * <math>d = 1 * 1</math> * <math>\sigma = \operatorname{Id} * 1 = \varphi * d</math> * <math>\sigma_k = \operatorname{Id}_k * 1</math> * <math>\operatorname{Id} = \varphi * 1 = \sigma * \mu</math> * <math>\operatorname{Id}_k = \sigma_k * \mu</math> The Dirichlet convolution can be defined for general arithmetic functions, and yields a ring structure, the [[Dirichlet ring]]. The [[Dirichlet convolution]] of two multiplicative functions is again multiplicative. A proof of this fact is given by the following expansion for relatively prime <math>a,b \in \mathbb{Z}^{+}</math>: <math display="block">\begin{align} (f \ast g)(ab) & = \sum_{d|ab} f(d) g\left(\frac{ab}{d}\right) \\ &= \sum_{d_1|a} \sum_{d_2|b} f(d_1d_2) g\left(\frac{ab}{d_1d_2}\right) \\ &= \sum_{d_1|a} f(d_1) g\left(\frac{a}{d_1}\right) \times \sum_{d_2|b} f(d_2) g\left(\frac{b}{d_2}\right) \\ &= (f \ast g)(a) \cdot (f \ast g)(b). \end{align} </math> === Dirichlet series for some multiplicative functions === * <math>\sum_{n\ge 1} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}</math> * <math>\sum_{n\ge 1} \frac{\varphi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}</math> * <math>\sum_{n\ge 1} \frac{d(n)^2}{n^s} = \frac{\zeta(s)^4}{\zeta(2s)}</math> * <math>\sum_{n\ge 1} \frac{2^{\omega(n)}}{n^s} = \frac{\zeta(s)^2}{\zeta(2s)}</math> More examples are shown in the article on [[Dirichlet series]]. == Rational arithmetical functions == An arithmetical function ''f'' is said to be a rational arithmetical function of order <math>(r, s)</math> if there exists completely multiplicative functions ''g''<sub>''1''</sub>,...,''g''<sub>''r''</sub>, ''h''<sub>''1''</sub>,...,''h''<sub>''s''</sub> such that <math display="block"> f=g_1\ast\cdots\ast g_r\ast h_1^{-1}\ast\cdots\ast h_s^{-1}, </math> where the inverses are with respect to the Dirichlet convolution. Rational arithmetical functions of order <math>(1, 1)</math> are known as totient functions, and rational arithmetical functions of order <math>(2,0)</math> are known as quadratic functions or specially multiplicative functions. Euler's function <math>\varphi(n)</math> is a totient function, and the divisor function <math>\sigma_k(n)</math> is a quadratic function. Completely multiplicative functions are rational arithmetical functions of order <math>(1,0)</math>. Liouville's function <math>\lambda(n)</math> is completely multiplicative. The Möbius function <math>\mu(n)</math> is a rational arithmetical function of order <math>(0, 1)</math>. By convention, the identity element <math>\varepsilon</math> under the Dirichlet convolution is a rational arithmetical function of order <math>(0, 0)</math>. All rational arithmetical functions are multiplicative. A multiplicative function ''f'' is a rational arithmetical function of order <math>(r, s)</math> if and only if its Bell series is of the form <math display="block"> {\displaystyle f_{p}(x)=\sum _{n=0}^{\infty }f(p^{n})x^{n}= \frac{(1-h_1(p) x)(1-h_2(p) x)\cdots (1-h_s(p) x)} {(1-g_1(p) x)(1-g_2(p) x)\cdots (1-g_r(p) x)}} </math> for all prime numbers <math>p</math>. The concept of a rational arithmetical function originates from R. Vaidyanathaswamy (1931). == Busche-Ramanujan identities == A multiplicative function <math>f</math> is said to be specially multiplicative if there is a completely multiplicative function <math>f_A</math> such that :<math> f(m) f(n) = \sum_{d\mid (m,n)} f(mn/d^2) f_A(d) </math> for all positive integers <math>m</math> and <math>n</math>, or equivalently :<math> f(mn) = \sum_{d\mid (m,n)} f(m/d) f(n/d) \mu(d) f_A(d) </math> for all positive integers <math>m</math> and <math>n</math>, where <math>\mu</math> is the Möbius function. These are known as Busche-Ramanujan identities. In 1906, E. Busche stated the identity :<math> \sigma_k(m) \sigma_k(n) = \sum_{d\mid (m,n)} \sigma_k(mn/d^2) d^k, </math> and, in 1915, S. Ramanujan gave the inverse form :<math> \sigma_k(mn) = \sum_{d\mid (m,n)} \sigma_k(m/d) \sigma_k(n/d) \mu(d) d^k </math> for <math>k=0</math>. S. Chowla gave the inverse form for general <math>k</math> in 1929, see P. J. McCarthy (1986). The study of Busche-Ramanujan identities begun from an attempt to better understand the special cases given by Busche and Ramanujan. It is known that quadratic functions <math>f=g_1\ast g_2</math> satisfy the Busche-Ramanujan identities with <math>f_A=g_1g_2</math>. Quadratic functions are exactly the same as specially multiplicative functions. Totients satisfy a restricted Busche-Ramanujan identity. For further details, see [[Ramaswamy S. Vaidyanathaswamy|R. Vaidyanathaswamy]] (1931). ==Multiplicative function over {{math|''F''<sub>''q''</sub>[''X'']}}== Let {{math|1=''A'' = ''F''<sub>''q''</sub>[''X'']}}, the polynomial ring over the [[finite field]] with ''q'' elements. ''A'' is a [[principal ideal domain]] and therefore ''A'' is a [[unique factorization domain]]. A complex-valued function <math>\lambda</math> on ''A'' is called '''multiplicative''' if <math>\lambda(fg)=\lambda(f)\lambda(g)</math> whenever ''f'' and ''g'' are [[relatively prime]]. ===Zeta function and Dirichlet series in {{math|''F''<sub>''q''</sub>[''X'']}}=== Let ''h'' be a polynomial arithmetic function (i.e. a function on set of monic polynomials over ''A''). Its corresponding Dirichlet series is defined to be : <math display="block">D_h(s)=\sum_{f\text{ monic}}h(f)|f|^{-s},</math> where for <math>g\in A,</math> set <math>|g|=q^{\deg(g)}</math> if <math>g\ne 0,</math> and <math>|g|=0</math> otherwise. The polynomial zeta function is then : <math display="block">\zeta_A(s)=\sum_{f\text{ monic}}|f|^{-s}.</math> Similar to the situation in {{math|'''N'''}}, every Dirichlet series of a multiplicative function ''h'' has a product representation ([[Euler product]]): : <math display="block">D_{h}(s)=\prod_P \left(\sum_{n\mathop =0}^{\infty}h(P^{n})|P|^{-sn}\right),</math> where the product runs over all monic irreducible polynomials ''P''. For example, the product representation of the zeta function is as for the integers: : <math display="block">\zeta_A(s)=\prod_{P}(1-|P|^{-s})^{-1}.</math> Unlike the classical [[zeta function]], <math>\zeta_A(s)</math> is a simple rational function: : <math display="block">\zeta_A(s)=\sum_f |f|^{-s} = \sum_n\sum_{\deg(f)=n}q^{-sn}=\sum_n(q^{n-sn})=(1-q^{1-s})^{-1}.</math> In a similar way, If ''f'' and ''g'' are two polynomial arithmetic functions, one defines ''f'' * ''g'', the ''Dirichlet convolution'' of ''f'' and ''g'', by : <math display="block"> \begin{align} (f*g)(m) &= \sum_{d \mid m} f(d)g\left(\frac{m}{d}\right) \\ &= \sum_{ab = m}f(a)g(b), \end{align} </math> where the sum is over all monic [[divisor]]s ''d'' of ''m'', or equivalently over all pairs (''a'', ''b'') of monic polynomials whose product is ''m''. The identity <math>D_h D_g = D_{h*g}</math> still holds. == Multivariate == [[Multivariate function]]s can be constructed using multiplicative model estimators. Where a matrix function of {{math|1=''A''}} is defined as <math display="block">D_N = N^2 \times N(N + 1) / 2</math> a sum can be [[logarithmic distribution|distributed]] across the product<math display="block">y_t = \sum(t/T)^{1/2}u_t = \sum(t/T)^{1/2}G_t^{1/2}\epsilon_t</math> For the efficient [[estimation]] of {{math|1=Σ(.)}}, the following two [[nonparametric regression]]s can be considered: <math display="block">\tilde{y}^2_t = \frac{y^2_t}{g_t} = \sigma^2(t/T) + \sigma^2(t/T)(\epsilon^2_t - 1),</math> and <math display="block">y^2_t = \sigma^2(t/T) + \sigma^2(t/T)(g_t\epsilon^2_t - 1).</math> Thus it gives an estimate value of <math display="block">L_t(\tau;u) = \sum_{t=1}^T K_h(u - t/T)\begin{bmatrix} ln\tau + \frac{y^2_t}{g_t\tau} \end{bmatrix}</math> with a local likelihood function for <math>y^2_t</math> with known <math>g_t</math> and unknown <math>\sigma^2(t/T)</math>. == Generalizations == An arithmetical function <math>f</math> is quasimultiplicative if there exists a nonzero constant <math>c</math> such that <math> c\,f(mn)=f(m)f(n) </math> for all positive integers <math>m, n</math> with <math>(m, n)=1</math>. This concept originates by Lahiri (1972). An arithmetical function <math>f</math> is semimultiplicative if there exists a nonzero constant <math>c</math>, a positive integer <math>a</math> and a multiplicative function <math>f_m</math> such that <math> f(n)=c f_m(n/a) </math> for all positive integers <math>n</math> (under the convention that <math>f_m(x)=0</math> if <math>x</math> is not a positive integer.) This concept is due to David Rearick (1966). An arithmetical function <math>f</math> is Selberg multiplicative if for each prime <math>p</math> there exists a function <math>f_p</math> on nonnegative integers with <math>f_p(0)=1</math> for all but finitely many primes <math>p</math> such that <math> f(n)=\prod_{p} f_p(\nu_p(n)) </math> for all positive integers <math>n</math>, where <math>\nu_p(n)</math> is the exponent of <math>p</math> in the canonical factorization of <math>n</math>. See Selberg (1977). It is known that the classes of semimultiplicative and Selberg multiplicative functions coincide. They both satisfy the arithmetical identity <math> f(m)f(n)=f((m, n))f([m, n]) </math> for all positive integers <math>m, n</math>. See Haukkanen (2012). It is well known and easy to see that multiplicative functions are quasimultiplicative functions with <math>c=1</math> and quasimultiplicative functions are semimultiplicative functions with <math>a=1</math>. ==See also== * [[Euler product]] * [[Bell series]] * [[Lambert series]] ==References== * See chapter 2 of {{Apostol IANT}} * P. J. McCarthy, Introduction to Arithmetical Functions, Universitext. New York: Springer-Verlag, 1986. * {{cite journal |title=Efficient estimation of a multivariate multiplicative volatility model |journal=Journal of Econometrics |date=2010 |volume=159 |issue=1 |pages=55–73 |doi=10.1016/j.jeconom.2010.04.007 |s2cid=54812323 |url=http://sticerd.lse.ac.uk/dps/em/em541.pdf |last1=Hafner |first1=Christian M. |last2=Linton |first2=Oliver }} *{{cite journal |author=P. Haukkanen |title=Some characterizations of specially multiplicative functions |journal=Int. J. Math. Math. Sci. |volume=2003 |pages=2335–2344 |year=2003 |issue=37 |doi=10.1155/S0161171203301139 |doi-access=free |url=https://www.emis.de/journals/HOA/IJMMS/Volume2003_37/515979.abs.html }} *{{cite journal |author=P. Haukkanen |title=Extensions of the class of multiplicative functions |journal=East–West Journal of Mathematics |volume=14 |issue=2 |pages=101–113 |year=2012 |url=http://eastwestmath.org/index.php/ewm/article/view/100/98 }} *{{cite journal |author=DB Lahiri |title=Hypo-multiplicative number-theoretic functions |journal=Aequationes Mathematicae |volume=8 |issue=3 |pages=316–317 |year=1972 |doi=10.1007/BF01844515 }} *{{cite journal |author=D. Rearick |title=Semi-multiplicative functions |journal=Duke Math. J. |volume=33 |pages=49–53 |year=1966}} *{{cite journal |author=L. Tóth |title=Two generalizations of the Busche-Ramanujan identities |journal=International Journal of Number Theory |volume=9 |pages=1301–1311 |year=2013 |issue=5 |doi=10.1142/S1793042113500280 |arxiv=1301.3331 }} *{{cite journal |author=R. Vaidyanathaswamy |author-link=Ramaswamy S. Vaidyanathaswamy |title=The theory of multiplicative arithmetic functions |journal=Transactions of the American Mathematical Society |volume=33 |issue=2 |pages=579–662 |year=1931 |doi=10.1090/S0002-9947-1931-1501607-1 |doi-access=free }} *S. Ramanujan, Some formulae in the analytic theory of numbers. Messenger 45 (1915), 81--84. *E. Busche, Lösung einer Aufgabe über Teileranzahlen. Mitt. Math. Ges. Hamb. 4, 229--237 (1906) *A. Selberg: Remarks on multiplicative functions. Number theory day (Proc. Conf., Rockefeller Univ., New York, 1976), pp. 232–241, Springer, 1977. ==External links== * {{PlanetMath |urlname=multiplicativefunction |title=Multiplicative function}} ==References== {{Reflist}} [[Category:Multiplicative functions| ]] [[Category:Number theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Apostol IANT
(
edit
)
Template:Block indent
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Hatnote
(
edit
)
Template:Math
(
edit
)
Template:PlanetMath
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)