Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multiply perfect number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Number whose divisors add to a multiple of that number}} [[File:Multiply perfect number Cuisenaire rods 6.png|thumb|Demonstration, with [[Cuisenaire rods]], of the {{nowrap|2-perfection}} of the number 6]] In [[mathematics]], a '''multiply perfect number''' (also called '''multiperfect number''' or '''pluperfect number''') is a generalization of a [[perfect number]]. For a given [[natural number]] ''k'', a number ''n'' is called {{nowrap|''k''-perfect}} (or {{nowrap|''k''-fold}} perfect) if the sum of all positive [[divisor]]s of ''n'' (the [[divisor function]], ''σ''(''n'')) is equal to ''kn''; a number is thus [[perfect number|perfect]] [[if and only if]] it is {{nowrap|2-perfect}}. A number that is {{nowrap|''k''-perfect}} for a certain ''k'' is called a multiply perfect number. As of 2014, {{nowrap|''k''-perfect}} numbers are known for each value of ''k'' up to 11.<ref name=fl/> It is unknown whether there are any [[parity (mathematics)|odd]] multiply perfect numbers other than 1. The first few multiply perfect numbers are: :1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, ... {{OEIS|A007691}}. == Example == The sum of the divisors of 120 is :1 + 2 + 3 + 4 + 5 + 6 + 8 + 10 + 12 + 15 + 20 + 24 + 30 + 40 + 60 + 120 = 360 which is 3 × 120. Therefore 120 is a {{nowrap|3-perfect}} number. == Smallest known ''k''-perfect numbers == The following table gives an overview of the smallest known {{nowrap|''k''-perfect}} numbers for ''k'' ≤ 11 {{OEIS|A007539}}: {| class="wikitable" ! ''k'' !! Smallest ''k''-perfect number !! Factors !! Found by |- | 1 || [[1 (number)|1]] || ||''ancient'' |- | 2 || [[6 (number)|6]] || 2 × 3||''ancient'' |- | 3 || [[120 (number)|120]] || 2<sup>3</sup> × 3 × 5|| ''ancient'' |- | 4 || 30240 || 2<sup>5</sup> × 3<sup>3</sup> × 5 × 7 || [[René Descartes]], circa 1638 |- | 5 || 14182439040 || 2<sup>7</sup> × 3<sup>4</sup> × 5 × 7 × 11<sup>2</sup> × 17 × 19 || René Descartes, circa 1638 |- | 6 || 154345556085770649600 (21 digits) || 2<sup>15</sup> × 3<sup>5</sup> × 5<sup>2</sup> × 7<sup>2</sup> × 11 × 13 × 17 × 19 × 31 × 43 × 257 || [[Robert Daniel Carmichael]], 1907 |- | 7 || 141310897947438348259849...523264343544818565120000 (57 digits)|| 2<sup>32</sup> × 3<sup>11</sup> × 5<sup>4</sup> × 7<sup>5</sup> × 11<sup>2</sup> × 13<sup>2</sup> × 17 × 19<sup>3</sup> × 23 × 31 × 37 × 43 × 61 × 71 × 73 × 89 × 181 × 2141 × 599479 || TE Mason, 1911 |- | 8 || 826809968707776137289924...057256213348352000000000 (133 digits) || 2<sup>62</sup> × 3<sup>15</sup> × 5<sup>9</sup> × 7<sup>7</sup> × 11<sup>3</sup> × 13<sup>3</sup> × 17<sup>2</sup> × 19 × 23 × 29 × 31<sup>2</sup> × 37 × 41 × 43 × 53 × 61<sup>2</sup> × 71<sup>2</sup> × 73 × 83 × 89 × 97<sup>2</sup> × 127 × 193 × 283 × 307 × 317 × 331 × 337 × 487 × 521<sup>2</sup> × 601 × 1201 × 1279 × 2557 × 3169 × 5113 × 92737 × 649657 || Stephen F. Gretton, 1990<ref name=fl>{{cite web |url=http://wwwhomes.uni-bielefeld.de/achim/mpn.html |title=The Multiply Perfect Numbers Page |access-date=22 January 2014 |first=Achim |last=Flammenkamp}}</ref> |- | 9 || 561308081837371589999987...415685343739904000000000 (287 digits) || 2<sup>104</sup> × 3<sup>43</sup> × 5<sup>9</sup> × 7<sup>12</sup> × 11<sup>6</sup> × 13<sup>4</sup> × 17 × 19<sup>4</sup> × 23<sup>2</sup> × 29 × 31<sup>4</sup> × 37<sup>3</sup> × 41<sup>2</sup> × 43<sup>2</sup> × 47<sup>2</sup> × 53 × 59 × 61 × 67 × 71<sup>3</sup> × 73 × 79<sup>2</sup> × 83 × 89 × 97 × 103<sup>2</sup> × 107 × 127 × 131<sup>2</sup> × 137<sup>2</sup> × 151<sup>2</sup> × 191 × 211 × 241 × 331 × 337 × 431 × 521 × 547 × 631 × 661 × 683 × 709 × 911 × 1093 × 1301 × 1723 × 2521 × 3067 × 3571 × 3851 × 5501 × 6829 × 6911 × 8647 × 17293 × 17351 × 29191 × 30941 × 45319 × 106681 × 110563 × 122921 × 152041 × 570461 × 16148168401 || Fred Helenius, 1995<ref name=fl/> |- | 10 || 448565429898310924320164...000000000000000000000000 (639 digits) || 2<sup>175</sup> × 3<sup>69</sup> × 5<sup>29</sup> × 7<sup>18</sup> × 11<sup>19</sup> × 13<sup>8</sup> × 17<sup>9</sup> × 19<sup>7</sup> × 23<sup>9</sup> × 29<sup>3</sup> × 31<sup>8</sup> × 37<sup>2</sup> × 41<sup>4</sup> × 43<sup>4</sup> × 47<sup>4</sup> × 53<sup>3</sup> × 59 × 61<sup>5</sup> × 67<sup>4</sup> × 71<sup>4</sup> × 73<sup>2</sup> × 79 × 83 × 89 × 97 × 101<sup>3</sup> × 103<sup>2</sup> × 107<sup>2</sup> × 109 × 113 × 127<sup>2</sup> × 131<sup>2</sup> × 139 × 149 × 151 × 163 × 179 × 181<sup>2</sup> × 191 × 197 × 199 × 211<sup>3</sup> × 223 × 239 × 257 × 271 × 281 × 307 × 331 × 337 × 353<sup>2</sup> × 367 × 373 × 397 × 419 × 421 × 521 × 523 × 547<sup>2</sup> × 613 × 683 × 761 × 827 × 971 × 991 × 1093 × 1741 × 1801 × 2113 × 2221 × 2237 × 2437 × 2551 × 2851 × 3221 × 3571 × 3637 × 3833 × 4339 × 5101 × 5419 × 6577 × 6709 × 7621 × 7699 × 8269 × 8647 × 11093 × 13421 × 13441 × 14621 × 17293 × 26417 × 26881 × 31723 × 44371 × 81343 × 88741 × 114577 × 160967 × 189799 × 229153 × 292561 × 579281 × 581173 × 583367 × 1609669 × 3500201 × 119782433 × 212601841 × 2664097031 × 2931542417 × 43872038849 × 374857981681 × 4534166740403 || [[George Woltman]], 2013<ref name=fl/> |- | 11 || 251850413483992918774837...000000000000000000000000 (1907 digits) || 2<sup>468</sup> × 3<sup>140</sup> × 5<sup>66</sup> × 7<sup>49</sup> × 11<sup>40</sup> × 13<sup>31</sup> × 17<sup>11</sup> × 19<sup>12</sup> × 23<sup>9</sup> × 29<sup>7</sup> × 31<sup>11</sup> × 37<sup>8</sup> × 41<sup>5</sup> × 43<sup>3</sup> × 47<sup>3</sup> × 53<sup>4</sup> × 59<sup>3</sup> × 61<sup>2</sup> × 67<sup>4</sup> × 71<sup>4</sup> × 73<sup>3</sup> × 79 × 83<sup>2</sup> × 89 × 97<sup>4</sup> × 101<sup>4</sup> × 103<sup>3</sup> × 109<sup>3</sup> × 113<sup>2</sup> × 127<sup>3</sup> × 131<sup>3</sup> × 137<sup>2</sup> × 139<sup>2</sup> × 149<sup>2</sup> × 151 × 157<sup>2</sup> × 163 × 167 × 173 × 181 × 191 × 193<sup>2</sup> × 197 × 199 × 211<sup>3</sup> × 223 × 227 × 229<sup>2</sup> × 239 × 251 × 257 × 263 × 269<sup>3</sup> × 271 × 281<sup>2</sup> × 293 × 307<sup>3</sup> × 313 × 317 × 331 × 347 × 349 × 367 × 373 × 397 × 401 × 419 × 421 × 431 × 443<sup>2</sup> × 449 × 457 × 461 × 467 × 491 × 499<sup>2</sup> × 541 × 547 × 569 × 571 × 599 × 607 × 613 × 647 × 691 × 701 × 719 × 727 × 761 × 827 × 853 × 937 × 967 × 991 × 997 × 1013 × 1061 × 1087 × 1171 × 1213 × 1223 × 1231 × 1279 × 1381 × 1399 × 1433 × 1609 × 1613 × 1619 × 1723 × 1741 × 1783 × 1873 × 1933 × 1979 × 2081 × 2089 × 2221 × 2357 × 2551 × 2657 × 2671 × 2749 × 2791 × 2801 × 2803 × 3331 × 3433 × 4051 × 4177 × 4231 × 5581 × 5653 × 5839 × 6661 × 7237 × 7699 × 8081 × 8101 × 8269 × 8581 × 8941 × 10501 × 11833 × 12583 × 12941 × 13441 × 14281 × 15053 × 17929 × 19181 × 20809 × 21997 × 23063 × 23971 × 26399 × 26881 × 27061 × 28099 × 29251 × 32051 × 32059 × 32323 × 33347 × 33637 × 36373 × 38197 × 41617 × 51853 × 62011 × 67927 × 73547 × 77081 × 83233 × 92251 × 93253 × 124021 × 133387 × 141311 × 175433 × 248041 × 256471 × 262321 × 292561 × 338753 × 353641 × 441281 × 449653 × 509221 × 511801 × 540079 × 639083 × 696607 × 746023 × 922561 × 1095551 × 1401943 × 1412753 × 1428127 × 1984327 × 2556331 × 5112661 × 5714803 × 7450297 × 8334721 × 10715147 × 14091139 × 14092193 × 18739907 × 19270249 × 29866451 × 96656723 × 133338869 × 193707721 × 283763713 × 407865361 × 700116563 × 795217607 × 3035864933 × 3336809191 × 35061928679 × 143881112839 × 161969595577 × 287762225677 × 761838257287 × 840139875599 × 2031161085853 × 2454335007529 × 2765759031089 × 31280679788951 × 75364676329903 × 901563572369231 × 2169378653672701 × 4764764439424783 × 70321958644800017 × 79787519018560501 × 702022478271339803 × 1839633098314450447 × 165301473942399079669 × 604088623657497125653141 × 160014034995323841360748039 × 25922273669242462300441182317 × 15428152323948966909689390436420781 × 420391294797275951862132367930818883361 × 23735410086474640244277823338130677687887 × 628683935022908831926019116410056880219316806841500141982334538232031397827230330241 || George Woltman, 2001<ref name=fl/> |} == Properties == It can be [[mathematical proof|proven]] that: * For a given [[prime number]] ''p'', if ''n'' is {{nowrap|''p''-perfect}} and ''p'' does not divide ''n'', then ''pn'' is {{nowrap|(''p'' + 1)-perfect}}. This implies that an [[integer]] ''n'' is a {{nowrap|3-perfect}} number divisible by 2 but not by 4, if and only if ''n''/2 is an odd [[perfect number]], of which none are known. * If 3''n'' is {{nowrap|4''k''-perfect}} and 3 does not divide ''n'', then ''n'' is {{nowrap|3''k''-perfect}}. == Odd multiply perfect numbers == {{Unsolved|mathematics|Are there any odd multiply perfect numbers?}} It is unknown whether there are any odd multiply perfect numbers other than 1. However if an odd {{nowrap|''k''-perfect}} number ''n'' exists where ''k'' > 2, then it must satisfy the following conditions:<ref name="HBI105" /> * The largest prime factor is ≥ 100129 * The second largest prime factor is ≥ 1009 * The third largest prime factor is ≥ 101 Tóth found several numbers that would be odd multiperfect, if one of their factors was a square ({{harvtxt|Tóth|2025}}). An example is <math>8999757</math>, which would be an odd multiperfect number, if only one of its prime factors, <math>61</math>, was a square. This is closely related to the concept of [[Descartes number]]s. == Bounds == In [[Big O notation#Little-o notation|little-o notation]], the number of multiply perfect numbers less than ''x'' is <math>o(x^\varepsilon)</math> for all ε > 0.<ref name="HBI105">{{harvnb|Sándor|Mitrinović|Crstici|2006|p=105}}</ref> The number of ''k''-perfect numbers ''n'' for ''n'' ≤ ''x'' is less than <math>cx^{c'\log\log\log x/\log\log x}</math>, where ''c'' and ''c''' are constants independent of ''k''.<ref name="HBI105" /> Under the assumption of the [[Riemann hypothesis]], the following [[inequality (mathematics)|inequality]] is true for all {{nowrap|''k''-perfect}} numbers ''n'', where ''k'' > 3 :<math>\log\log n > k\cdot e^{-\gamma}</math> where <math>\gamma</math> is [[Euler–Mascheroni constant|Euler's gamma constant]]. This can be proven using [[Robin's theorem]]. The [[number of divisors]] τ(''n'') of a {{nowrap|''k''-perfect}} number ''n'' satisfies the inequality<ref>{{cite arXiv |last=Dagal |first=Keneth Adrian P. |eprint=1309.3527 |title=A Lower Bound for τ(n) for k-Multiperfect Number |class=math.NT |date=2013}}</ref> :<math>\tau(n) > e^{k - \gamma}.</math> The [[prime omega function|number of distinct prime factors]] ω(''n'') of ''n'' satisfies<ref name="HBI106">{{harvnb|Sándor|Mitrinović|Crstici|2006|p=106}}</ref> :<math>\omega(n) \ge k^2-1.</math> If the distinct prime factors of ''n'' are <math>p_1, p_2, \ldots, p_r</math>, then:<ref name="HBI106" /> :<math>r \left(\sqrt[r]{3/2} - 1\right) < \sum_{i=1}^{r} \frac{1}{p_i} < r \left(1 - \sqrt[r]{6/k^2}\right), ~~ \text{if }n\text{ is even}</math> :<math>r \left(\sqrt[3r]{k^2} - 1\right) < \sum_{i=1}^{r} \frac{1}{p_i} < r \left(1 - \sqrt[r]{8/(k\pi^2)}\right), ~~ \text{if }n\text{ is odd}</math> ==Specific values of ''k''== ===Perfect numbers=== {{main|Perfect number}} A number ''n'' with σ(''n'') = 2''n'' is '''perfect'''. ===Triperfect numbers=== A number ''n'' with σ(''n'') = 3''n'' is '''triperfect'''. There are only six known triperfect numbers and these are believed to comprise all such numbers: : 120, 672, 523776, 459818240, 1476304896, 51001180160 {{OEIS|A005820}} If there exists an odd perfect number ''m'' (a famous [[open problem]]) then 2''m'' would be {{nowrap|3-perfect}}, since σ(2''m'') = σ(2)σ(''m'') = 3×2''m''. An odd triperfect number must be a [[square number]] exceeding 10<sup>70</sup> and have at least 12 distinct prime factors, the largest exceeding 10<sup>5</sup>.<ref>{{harvnb|Sándor|Mitrinović|Crstici|2006|pp=108–109}}</ref> ==Variations== ===Unitary multiply perfect numbers=== A similar extension can be made for [[unitary perfect number]]s. A positive integer ''n'' is called a '''unitary multi''' {{nowrap|''k''-'''perfect'''}} '''number''' if σ<sup>*</sup>(''n'') = ''kn'' where σ<sup>*</sup>(''n'') is the sum of its [[unitary divisor]]s. (A divisor ''d'' of a number ''n'' is a unitary divisor if ''d'' and ''n/d'' [[coprime integers|share no common factors]].). A '''unitary multiply perfect number''' is simply a unitary multi {{nowrap|''k''-perfect}} number for some positive integer ''k''. Equivalently, unitary multiply perfect numbers are those ''n'' for which ''n'' divides σ<sup>*</sup>(''n''). A unitary multi {{nowrap|2-perfect}} number is naturally called a '''unitary perfect number'''. In the case ''k'' > 2, no example of a unitary multi {{nowrap|''k''-perfect}} number is yet known. It is known that if such a number exists, it must be [[parity (mathematics)|even]] and greater than 10<sup>102</sup> and must have more than forty four odd prime factors. This problem is probably very difficult to settle. The concept of unitary divisor was originally due to [[Ramaswamy S. Vaidyanathaswamy|R. Vaidyanathaswamy]] (1931) who called such a divisor as block factor. The present terminology is due to E. Cohen (1960). The first few unitary multiply perfect numbers are: :1, 6, 60, 90, 87360 {{OEIS|A327158}} ===Bi-unitary multiply perfect numbers=== A positive integer ''n'' is called a '''bi-unitary multi''' {{nowrap|''k''-'''perfect'''}} '''number''' if σ<sup>**</sup>(''n'') = ''kn'' where σ<sup>**</sup>(''n'') is the sum of its [[bi-unitary divisor]]s. This concept is due to Peter Hagis (1987). A '''bi-unitary multiply perfect number''' is simply a bi-unitary multi {{nowrap|''k''-perfect}} number for some positive integer ''k''. Equivalently, bi-unitary multiply perfect numbers are those ''n'' for which ''n'' divides σ<sup>**</sup>(''n''). A bi-unitary multi {{nowrap|2-perfect}} number is naturally called a '''bi-unitary perfect number''', and a bi-unitary multi {{nowrap|3-perfect}} number is called a '''bi-unitary triperfect number'''. A divisor ''d'' of a positive integer ''n'' is called a '''bi-unitary divisor''' of ''n'' if the greatest common unitary divisor (gcud) of ''d'' and ''n''/''d'' equals 1. This concept is due to D. Surynarayana (1972). The sum of the (positive) bi-unitary divisors of ''n'' is denoted by σ<sup>**</sup>(''n''). Peter Hagis (1987) proved that there are no odd bi-unitary multiperfect numbers other than 1. Haukkanen and Sitaramaiah (2020) found all bi-unitary triperfect numbers of the form 2<sup>''a''</sup>''u'' where 1 ≤ ''a'' ≤ 6 and ''u'' is odd,<ref name="HS2020a">{{harvnb|Haukkanen|Sitaramaiah|2020a}}</ref><ref name="HS2020b">{{harvnb|Haukkanen|Sitaramaiah|2020b}}</ref><ref name="HS2020c">{{harvnb|Haukkanen|Sitaramaiah|2020c}}</ref> and partially the case where ''a'' = 7.<ref name="HS2020d">{{harvnb|Haukkanen|Sitaramaiah|2020d}}</ref> <ref name="HS2021a">{{harvnb|Haukkanen|Sitaramaiah|2021a}}</ref> Further, they fixed completely the case ''a'' = 8.<ref name="HS2021b">{{harvnb|Haukkanen|Sitaramaiah|2021b}}</ref> Tomohiro Yamada (Determining all biunitary triperfect numbers of a certain form, arXiv:2406.19331 [math.NT], 2024) proved that 2160 = 3<sup>3</sup> 80 is the only biunitary triperfect number of the form 3<sup>''a''</sup>''u'' where 3 ≤ ''a'' and ''u'' is not divisible by 3. The first few bi-unitary multiply perfect numbers are: :1, 6, 60, 90, 120, 672, 2160, 10080, 22848, 30240 {{OEIS|A189000}} ==References== {{reflist}} ===Sources=== *{{cite journal |first1=Kevin A. |last1=Broughan |first2=Qizhi |last2=Zhou |title=Odd multiperfect numbers of abundancy 4 |journal= Journal of Number Theory |doi=10.1016/j.jnt.2007.02.001 |year=2008 |mr=2419178 |volume=126 |number=6 |pages=1566–1575 |url=https://researchcommons.waikato.ac.nz/bitstream/10289/1796/1/Odd%20multiperfect%20numbers%20of%20abundancy%204.pdf |hdl=10289/1796 |hdl-access=free }} * {{cite book |last=Guy | first=Richard K. | author-link=Richard K. Guy | title=Unsolved problems in number theory | publisher=[[Springer-Verlag]] |edition=3rd | year=2004 |isbn=978-0-387-20860-2 | zbl=1058.11001 | at=B2 }} *{{cite journal |first1=Pentti |last1=Haukkanen |first2=V. |last2=Sitaramaiah |title=Bi-unitary multiperfect numbers, I |journal= Notes on Number Theory and Discrete Mathematics |doi=10.7546/nntdm.2020.26.1.93-171 |year=2020a |volume=26 |number=1 |pages=93–171 |url=http://nntdm.net/papers/nntdm-26/NNTDM-26-1-093-171.pdf |doi-access=free }} *{{cite journal |first1=Pentti |last1=Haukkanen |first2=V. |last2=Sitaramaiah |title=Bi-unitary multiperfect numbers, II |journal= Notes on Number Theory and Discrete Mathematics |doi=10.7546/nntdm.2020.26.2.1-26 |year=2020b |volume=26 |number=2 |pages=1–26 |url=http://nntdm.net/papers/nntdm-26/NNTDM-26-2-001-026.pdf |doi-access=free }} *{{cite journal |first1=Pentti |last1=Haukkanen |first2=V. |last2=Sitaramaiah |title=Bi-unitary multiperfect numbers, III |journal= Notes on Number Theory and Discrete Mathematics |doi=10.7546/nntdm.2020.26.3.33-67 |year=2020c |volume=26 |number=3 |pages=33–67 |url=http://nntdm.net/papers/nntdm-26/NNTDM-26-3-033-067.pdf |doi-access=free }} *{{cite journal |first1=Pentti |last1=Haukkanen |first2=V. |last2=Sitaramaiah |title=Bi-unitary multiperfect numbers, IV(a) |journal= Notes on Number Theory and Discrete Mathematics |doi=10.7546/nntdm.2020.26.4.2-32 |year=2020d |volume=26 |number=4 |pages=2–32 |url=https://nntdm.net/papers/nntdm-26/NNTDM-26-4-002-032.pdf |doi-access=free }} *{{cite journal |first1=Pentti |last1=Haukkanen |first2=V. |last2=Sitaramaiah |title=Bi-unitary multiperfect numbers, IV(b) |journal= Notes on Number Theory and Discrete Mathematics |doi=10.7546/nntdm.2021.27.1.45-69 |year=2021a |volume=27 |number=1 |pages=45–69 |url=https://nntdm.net/papers/nntdm-27/NNTDM-27-1-045-069.pdf |doi-access=free }} *{{cite journal |first1=Pentti |last1=Haukkanen |first2=V. |last2=Sitaramaiah |title=Bi-unitary multiperfect numbers, V |journal= Notes on Number Theory and Discrete Mathematics |doi=10.7546/nntdm.2021.27.2.20-40 |year=2021b |volume=27 |number=2 |pages=20–40 |url=https://nntdm.net/papers/nntdm-27/NNTDM-27-2-020-040.pdf |doi-access=free }} * {{cite journal | zbl=0612.10006 | last=Kishore | first=Masao | title=Odd triperfect numbers are divisible by twelve distinct prime factors | journal= Journal of the Australian Mathematical Society, Series A | volume=42 | issue=2 | pages=173–182 | year=1987 | issn=0263-6115 | doi=10.1017/s1446788700028184| doi-access=free }} * {{cite journal |first1=Richard |last1=Laatsch |title=Measuring the abundancy of integers |journal=[[Mathematics Magazine]] |jstor=2690424 |year=1986 |volume=59 |number=2 |pages=84–92 |mr=0835144| issn=0025-570X | zbl=0601.10003 |doi=10.2307/2690424}} * {{cite journal |first1=James G. |last1=Merickel |title= Divisors of Sums of Divisors: 10617 |journal= The American Mathematical Monthly |year=1999 |jstor=2589515 |volume=106 |number=7 |page=693 |mr=1543520 |doi=10.2307/2589515 }} * {{cite journal |first1=Richard F. |last1=Ryan |title=A simpler dense proof regarding the abundancy index |journal= Mathematics Magazine |year=2003 |volume=76 |number=4 |pages=299–301 |doi=10.1080/0025570X.2003.11953197 |jstor=3219086 |mr=1573698 |s2cid=120960379 }} * {{cite book | editor1-last=Sándor | editor1-first=Jozsef | editor2-last=Crstici | editor2-first=Borislav | title=Handbook of number theory II | url=https://archive.org/details/handbooknumberth00sand_741 | url-access=limited | location=Dordrecht | publisher=Kluwer Academic | year=2004 | isbn=1-4020-2546-7 | pages=[https://archive.org/details/handbooknumberth00sand_741/page/n33 32]–36 | zbl=1079.11001 }} * {{cite book | editor1-last=Sándor | editor1-first=József | editor2-last=Mitrinović | editor2-first=Dragoslav S. | editor3-last=Crstici |editor3-first=Borislav | title=Handbook of number theory I | location=Dordrecht | publisher=[[Springer-Verlag]] | year=2006 | isbn=1-4020-4215-9 | zbl=1151.11300 }} * {{Cite thesis|degree=PhD |first1= Ronald M. |last1=Sorli |title=Algorithms in the study of multiperfect and odd perfect numbers |year=2003 |hdl=10453/20034 |publisher=University of Technology|location= Sydney }} * {{cite journal|last=Tóth|first=László|title=Odd Spoof Multiperfect Numbers|journal=Integers|volume=25|year=2025|issue=A19 |arxiv=2502.16954|url=https://math.colgate.edu/~integers/z19/z19.pdf}} * {{cite journal |first1= Paul A. |last1=Weiner |title=The abundancy ratio, a measure of perfection |journal= Mathematics Magazine |year=2000 |jstor=2690980 |volume=73 |number=4 |pages=307–310 |mr=1573474 |doi=10.1080/0025570x.2000.11996860 |s2cid=119773896 }} == See also == * [[Hemiperfect number]] == External links == * [http://wwwhomes.uni-bielefeld.de/achim/mpn.html The Multiply Perfect Numbers page] * [http://primes.utm.edu/glossary/page.php?sort=MultiplyPerfect The Prime Glossary: Multiply perfect numbers] * {{YouTube|id=DhPtIf-hpuU|title=The Six Triperfect Numbers}} {{Divisor classes}} {{Classes of natural numbers}} [[Category:Arithmetic dynamics]] [[Category:Divisor function]] [[Category:Perfect numbers]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite thesis
(
edit
)
Template:Cite web
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:Divisor classes
(
edit
)
Template:Harvnb
(
edit
)
Template:Harvtxt
(
edit
)
Template:Main
(
edit
)
Template:Nowrap
(
edit
)
Template:OEIS
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Unsolved
(
edit
)
Template:YouTube
(
edit
)