Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multivariate gamma function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Multivariate generalization of the gamma function}} In [[mathematics]], the '''multivariate gamma function''' Ξ<sub>''p''</sub> is a generalization of the [[gamma function]]. It is useful in [[multivariate statistics]], appearing in the [[probability density function]] of the [[Wishart distribution|Wishart]] and [[inverse Wishart distribution]]s, and the [[matrix variate beta distribution]].<ref>{{Cite journal|last=James|first=Alan T.|date=June 1964|title=Distributions of Matrix Variates and Latent Roots Derived from Normal Samples|url=http://projecteuclid.org/euclid.aoms/1177703550|journal=The Annals of Mathematical Statistics|language=en|volume=35|issue=2|pages=475β501|doi=10.1214/aoms/1177703550|issn=0003-4851|doi-access=free}}</ref> It has two equivalent definitions. One is given as the following integral over the <math>p \times p</math> [[positive-definite matrix|positive-definite]] real matrices: :<math> \Gamma_p(a)= \int_{S>0} \exp\left( -{\rm tr}(S)\right)\, \left|S\right|^{a-\frac{p+1}{2}} dS, </math> where <math>|S|</math> denotes the determinant of <math>S</math>. The other one, more useful to obtain a numerical result is: :<math> \Gamma_p(a)= \pi^{p(p-1)/4}\prod_{j=1}^p \Gamma(a+(1-j)/2). </math> In both definitions, <math>a</math> is a complex number whose real part satisfies <math>\Re(a) > (p-1)/2</math>. Note that <math>\Gamma_1(a)</math> reduces to the ordinary gamma function. The second of the above definitions allows to directly obtain the recursive relationships for <math>p\ge 2</math>: :<math> \Gamma_p(a) = \pi^{(p-1)/2} \Gamma(a) \Gamma_{p-1}(a-\tfrac{1}{2}) = \pi^{(p-1)/2} \Gamma_{p-1}(a) \Gamma(a+(1-p)/2). </math> Thus * <math>\Gamma_2(a)=\pi^{1/2}\Gamma(a)\Gamma(a-1/2)</math> * <math>\Gamma_3(a)=\pi^{3/2}\Gamma(a)\Gamma(a-1/2)\Gamma(a-1)</math> and so on. This can also be extended to non-integer values of <math>p</math> with the expression: <math>\Gamma_p(a)=\pi^{p(p-1)/4} \frac{G(a+\frac{1}2)G(a+1)}{G(a+\frac{1-p}2)G(a+1-\frac{p}2)}</math> Where G is the [[Barnes G-function]], the [[indefinite product]] of the [[Gamma function]]. The function is derived by Anderson<ref>{{Cite book|last=Anderson|first=T W|title=An Introduction to Multivariate Statistical Analysis|publisher=John Wiley and Sons|year=1984|isbn=0-471-88987-3|location=New York|pages=Ch. 7}}</ref> from first principles who also cites earlier work by [[John Wishart (statistician)|Wishart]], [[Prasanta Chandra Mahalanobis|Mahalanobis]] and others. There also exists a version of the multivariate gamma function which instead of a single complex number takes a <math>p</math>-dimensional vector of complex numbers as its argument. It generalizes the above defined multivariate gamma function insofar as the latter is obtained by a particular choice of multivariate argument of the former.<ref>{{cite web|url=https://dlmf.nist.gov/35|title=Chapter 35 Functions of Matrix Argument|work=[[Digital Library of Mathematical Functions]]|author=[[Donald Richards (statistician)|D. St. P. Richards]]|date=n.d.|access-date=23 May 2022}}</ref> == Derivatives == We may define the multivariate [[digamma function]] as :<math>\psi_p(a) = \frac{\partial \log\Gamma_p(a)}{\partial a} = \sum_{i=1}^p \psi(a+(1-i)/2) ,</math> and the general [[polygamma function]] as :<math>\psi_p^{(n)}(a) = \frac{\partial^n \log\Gamma_p(a)}{\partial a^n} = \sum_{i=1}^p \psi^{(n)}(a+(1-i)/2).</math> === Calculation steps === * Since ::<math>\Gamma_p(a) = \pi^{p(p-1)/4}\prod_{j=1}^p \Gamma\left(a+\frac{1-j}{2}\right),</math> :it follows that ::<math>\frac{\partial \Gamma_p(a)}{\partial a} = \pi^{p(p-1)/4}\sum_{i=1}^p \frac{\partial\Gamma\left(a+\frac{1-i}{2}\right)}{\partial a}\prod_{j=1, j\neq i}^p\Gamma\left(a+\frac{1-j}{2}\right).</math> * By definition of the [[digamma function]], ψ, ::<math>\frac{\partial\Gamma(a+(1-i)/2)}{\partial a} = \psi(a+(i-1)/2)\Gamma(a+(i-1)/2)</math> :it follows that ::<math> \begin{align} \frac{\partial \Gamma_p(a)}{\partial a} & = \pi^{p(p-1)/4}\prod_{j=1}^p \Gamma(a+(1-j)/2) \sum_{i=1}^p \psi(a+(1-i)/2) \\[4pt] & = \Gamma_p(a)\sum_{i=1}^p \psi(a+(1-i)/2). \end{align} </math> {{more footnotes|date=May 2012}} ==References== {{Reflist}} * 1. {{cite journal |title=Distributions of Matrix Variates and Latent Roots Derived from Normal Samples |last=James |first=A. |journal=[[Annals of Mathematical Statistics]] |volume=35 |issue=2 |year=1964 |pages=475–501 |doi=10.1214/aoms/1177703550 |mr=181057 | zbl = 0121.36605 |doi-access=free }} * 2. A. K. Gupta and D. K. Nagar 1999. "Matrix variate distributions". Chapman and Hall. [[Category:Gamma and related functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:More footnotes
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)