Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Napierian logarithm
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function}} [[File:NapLog.png|thumb|300px|A plot of the Napierian logarithm for inputs between 0 and 10<sup>8</sup>.]] [[File:Napier's Mirici Logarithmorum table for 19 deg.agr.jpg|thumb|300px|The 19 degree pages from Napier's 1614 table of logarithms of trigonometric functions ''[[Mirifici Logarithmorum Canonis Descriptio]]'']] The term '''Napierian logarithm''' or '''Naperian logarithm''', named after [[John Napier]], is often used to mean the [[natural logarithm]]. Napier did not introduce this ''natural'' logarithmic function, although it is named after him.<ref>{{cite book |last1=Larson |first1=Ron |last2=Hostetler |first2=Robert P. |last3=Edwards |first3=Bruce H. |year=2008 |title=Essential Calculus Early Transcendental Functions |publisher=Richard Stratton |isbn=978-0-618-87918-2 |location=U.S.A |pages=119}}</ref><ref name=Hobson>{{Citation|author=Ernest William Hobson|title=John Napier and the Invention of Logarithms, 1614|year=1914|publisher=The University Press|location=Cambridge|url=https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/34187/31151005337641.pdf}}</ref> However, if it is taken to mean the "[[logarithm]]s" as originally produced by Napier, it is a function given by (in terms of the modern [[natural logarithm]]): : <math>\mathrm{NapLog}(x) = -10^7 \ln (x/10^7) </math> The Napierian logarithm satisfies identities quite similar to the modern logarithm, such as<ref>{{cite web|last1=Roegel|first1=Denis|title=Napier's ideal construction of the logarithms|url=https://hal.inria.fr/inria-00543934/document|website=HAL|publisher=INRIA|accessdate=7 May 2018}}</ref> : <math>\mathrm{NapLog}(xy) \approx \mathrm{NapLog}(x)+\mathrm{NapLog}(y)-161180956</math> or :<math>\mathrm{NapLog}(xy/10^7) = \mathrm{NapLog}(x)+\mathrm{NapLog}(y) </math> In Napier's 1614 ''[[Mirifici Logarithmorum Canonis Descriptio]]'', he provides tables of logarithms of sines for 0 to 90°, where the values given (columns 3 and 5) are : <math>\mathrm{NapLog}(\theta) = -10^7 \ln (\sin(\theta)) </math> == Properties == Napier's "logarithm" is related to the [[natural logarithm]] by the relation : <math>\mathrm{NapLog} (x) \approx 10000000 (16.11809565 - \ln x)</math> and to the [[common logarithm]] by : <math>\mathrm{NapLog} (x) \approx 23025851 (7 - \log_{10} x).</math> Note that : <math>16.11809565 \approx 7 \ln \left(10\right) </math> and : <math>23025851 \approx 10^7 \ln (10).</math> Napierian logarithms are essentially natural logarithms with decimal points shifted 7 places rightward and with sign reversed. For instance the logarithmic values :<math>\ln(.5000000) = -0.6931471806</math> :<math>\ln(.3333333) = -1.0986123887</math> would have the corresponding Napierian logarithms: :<math>\mathrm{NapLog}(5000000) = 6931472</math> :<math>\mathrm{NapLog}(3333333) = 10986124</math> For further detail, see [[history of logarithms]]. ==References== {{Reflist}} *{{citation | last1 = Boyer | first1 = Carl B. | last2 = Merzbach | first2 = Uta C. | author2-link = Uta Merzbach | isbn = 978-0-471-54397-8 | page = [https://archive.org/details/historyofmathema00boye/page/313 313] | publisher = Wiley | title = A History of Mathematics | year = 1991 | url-access = registration | url = https://archive.org/details/historyofmathema00boye/page/313 }}. *{{cite book|author=C.H.Jr. Edwards|title=The Historical Development of the Calculus|url=https://books.google.com/books?id=ilrlBwAAQBAJ&q=napier+logarithm|date=6 December 2012|publisher=Springer Science & Business Media|isbn=978-1-4612-6230-5}}. *{{citation | last = Phillips | first = George McArtney | isbn = 978-0-387-95022-8 | page = [https://archive.org/details/twomillenniaofma0000phil/page/61 61] | publisher = Springer-Verlag | series = CMS Books in Mathematics | title = Two Millennia of Mathematics: from Archimedes to Gauss | volume = 6 | year = 2000 | url = https://archive.org/details/twomillenniaofma0000phil/page/61 }}. ==External links== * Denis Roegel (2012) [http://locomat.loria.fr/napier/napier1619construction.pdf Napier’s Ideal Construction of the Logarithms], from the Loria Collection of Mathematical Tables. [[Category:Logarithms]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)