Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Nilpotent matrix
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical concept in algebra}} In [[linear algebra]], a '''nilpotent matrix''' is a [[square matrix]] ''N'' such that :<math>N^k = 0\,</math> for some positive [[integer]] <math>k</math>. The smallest such <math>k</math> is called the '''index''' of <math>N</math>,<ref>{{harvtxt|Herstein|1975|p=294}}</ref> sometimes the '''degree''' of <math>N</math>. More generally, a '''nilpotent transformation''' is a [[linear transformation]] <math>L</math> of a [[vector space]] such that <math>L^k = 0</math> for some positive integer <math>k</math> (and thus, <math>L^j = 0</math> for all <math>j \geq k</math>).<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=312}}</ref><ref>{{harvtxt|Herstein|1975|p=268}}</ref><ref>{{harvtxt|Nering|1970|p=274}}</ref> Both of these concepts are special cases of a more general concept of [[nilpotent|nilpotence]] that applies to elements of [[ring (algebra)|rings]]. ==Examples== ===Example 1=== The matrix :<math> A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} </math> is nilpotent with index 2, since <math>A^2 = 0</math>. ===Example 2=== More generally, any <math>n</math>-dimensional [[triangular matrix]] with zeros along the [[main diagonal]] is nilpotent, with index <math>\le n</math> {{Citation needed|date=November 2022}}. For example, the matrix :<math> B=\begin{bmatrix} 0 & 2 & 1 & 6\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0 \end{bmatrix} </math> is nilpotent, with :<math> B^2=\begin{bmatrix} 0 & 0 & 2 & 7\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} ;\ B^3=\begin{bmatrix} 0 & 0 & 0 & 6\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} ;\ B^4=\begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} </math> The index of <math>B</math> is therefore 4. ===Example 3=== Although the examples above have a large number of zero entries, a typical nilpotent matrix does not. For example, :<math> C=\begin{bmatrix} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{bmatrix} \qquad C^2=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} </math> although the matrix has no zero entries. ===Example 4=== Additionally, any matrices of the form :<math> \begin{bmatrix} a_1 & a_1 & \cdots & a_1 \\ a_2 & a_2 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ -a_1-a_2-\ldots-a_{n-1} & -a_1-a_2-\ldots-a_{n-1} & \ldots & -a_1-a_2-\ldots-a_{n-1} \end{bmatrix}</math> such as :<math> \begin{bmatrix} 5 & 5 & 5 \\ 6 & 6 & 6 \\ -11 & -11 & -11 \end{bmatrix} </math> or :<math>\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 4 & 4 & 4 & 4 \\ -7 & -7 & -7 & -7 \end{bmatrix} </math> square to zero. ===Example 5=== Perhaps some of the most striking examples of nilpotent matrices are <math>n\times n</math> square matrices of the form: :<math>\begin{bmatrix} 2 & 2 & 2 & \cdots & 1-n \\ n+2 & 1 & 1 & \cdots & -n \\ 1 & n+2 & 1 & \cdots & -n \\ 1 & 1 & n+2 & \cdots & -n \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}</math> The first few of which are: :<math>\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & -2 \\ 5 & 1 & -3 \\ 1 & 5 & -3 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & 2 & -3 \\ 6 & 1 & 1 & -4 \\ 1 & 6 & 1 & -4 \\ 1 & 1 & 6 & -4 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & 2 & 2 & -4 \\ 7 & 1 & 1 & 1 & -5 \\ 1 & 7 & 1 & 1 & -5 \\ 1 & 1 & 7 & 1 & -5 \\ 1 & 1 & 1 & 7 & -5 \end{bmatrix} \qquad \ldots </math> These matrices are nilpotent but there are no zero entries in any powers of them less than the index.<ref name="Mercer2005">{{cite web |url=http://www.idmercer.com/nilpotent.pdf |title=Finding "nonobvious" nilpotent matrices |last1=Mercer |first1=Idris D. |date=31 October 2005 |website=idmercer.com |publisher=self-published; personal credentials: PhD Mathematics, [[Simon Fraser University]] |access-date=5 April 2023 }}</ref> ===Example 6=== Consider the linear space of [[polynomial]]s of a bounded degree. The [[derivative]] operator is a linear map. We know that applying the derivative to a polynomial decreases its degree by one, so when applying it iteratively, we will eventually obtain zero. Therefore, on such a space, the derivative is representable by a nilpotent matrix. ==Characterization== {{Unreferenced section|date=May 2018}} For an <math>n \times n</math> square matrix <math>N</math> with [[real number|real]] (or [[complex number|complex]]) entries, the following are equivalent: * <math>N</math> is nilpotent. * The [[characteristic polynomial]] for <math>N</math> is <math>\det \left(xI - N\right) = x^n</math>. * The [[minimal polynomial (linear algebra)|minimal polynomial]] for <math>N</math> is <math>x^k</math> for some positive integer <math>k \leq n</math>. * The only complex eigenvalue for <math>N</math> is 0. The last theorem holds true for matrices over any [[field (mathematics)|field]] of characteristic 0 or sufficiently large characteristic. (cf. [[Newton's identities]]) This theorem has several consequences, including: * The index of an <math>n \times n</math> nilpotent matrix is always less than or equal to <math>n</math>. For example, every <math>2 \times 2</math> nilpotent matrix squares to zero. * The [[determinant]] and [[trace (linear algebra)|trace]] of a nilpotent matrix are always zero. Consequently, a nilpotent matrix cannot be [[invertible matrix|invertible]]. * The only nilpotent [[diagonalizable matrix]] is the zero matrix. See also: [[Jordan–Chevalley decomposition#Nilpotency criterion]]. ==Classification== Consider the <math>n \times n</math> (upper) [[shift matrix]]: :<math>S = \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ 0 & 0 & 0 & \ldots & 0 \end{bmatrix}.</math> This matrix has 1s along the [[superdiagonal]] and 0s everywhere else. As a linear transformation, the shift matrix "shifts" the components of a vector one position to the left, with a zero appearing in the last position: :<math>S(x_1,x_2,\ldots,x_n) = (x_2,\ldots,x_n,0).</math><ref>{{harvtxt|Beauregard|Fraleigh|1973|p=312}}</ref> This matrix is nilpotent with degree <math>n</math>, and is the [[Canonical form|canonical]] nilpotent matrix. Specifically, if <math>N</math> is any nilpotent matrix, then <math>N</math> is [[matrix similarity|similar]] to a [[block diagonal matrix]] of the form :<math> \begin{bmatrix} S_1 & 0 & \ldots & 0 \\ 0 & S_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & S_r \end{bmatrix} </math> where each of the blocks <math>S_1,S_2,\ldots,S_r</math> is a shift matrix (possibly of different sizes). This form is a special case of the [[Jordan canonical form]] for matrices.<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=312,313}}</ref> For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix :<math> \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}. </math> That is, if <math>N</math> is any nonzero 2 × 2 nilpotent matrix, then there exists a basis '''b'''<sub>1</sub>, '''b'''<sub>2</sub> such that ''N'''''b'''<sub>1</sub> = 0 and ''N'''''b'''<sub>2</sub> = '''b'''<sub>1</sub>. This [[classification theorem]] holds for matrices over any [[field (mathematics)|field]]. (It is not necessary for the field to be algebraically closed.) ==Flag of subspaces== A nilpotent transformation <math>L</math> on <math>\mathbb{R}^n</math> naturally determines a [[flag (linear algebra)|flag]] of subspaces :<math> \{0\} \subset \ker L \subset \ker L^2 \subset \ldots \subset \ker L^{q-1} \subset \ker L^q = \mathbb{R}^n</math> and a signature :<math> 0 = n_0 < n_1 < n_2 < \ldots < n_{q-1} < n_q = n,\qquad n_i = \dim \ker L^i. </math> The signature characterizes <math>L</math> [[up to]] an invertible [[linear transformation]]. Furthermore, it satisfies the inequalities :<math> n_{j+1} - n_j \leq n_j - n_{j-1}, \qquad \mbox{for all } j = 1,\ldots,q-1. </math> Conversely, any sequence of natural numbers satisfying these inequalities is the signature of a nilpotent transformation. ==Additional properties== {{unordered list | If <math>N</math> is nilpotent of index <math>k</math> , then <math>I+N</math> and <math>I-N</math> are [[invertible matrix|invertible]], where <math>I</math> is the <math>n \times n</math> [[identity matrix]]. The inverses are given by : <math>\begin{align} (I + N)^{-1} &= \displaystyle\sum^k_{m=0}\left(-N\right)^m = I - N + N^2 - N^3 + N^4 - N^5 + N^6 - N^7 + \cdots +(-N)^k \\ (I - N)^{-1} &= \displaystyle\sum^k_{m=0}N^m = I + N + N^2 + N^3 + N^4 + N^5 + N^6 + N^7 + \cdots + N^k \\ \end{align}</math> | If <math>N</math> is nilpotent, then : <math>\det (I + N) = 1.</math> Conversely, if <math>A</math> is a matrix and : <math>\det (I + tA) = 1\!\,</math> for all values of <math>t</math>, then <math>A</math> is nilpotent. In fact, since <math>p(t) = \det (I + tA) - 1</math> is a polynomial of degree <math>n</math>, it suffices to have this hold for <math>n+1</math> distinct values of <math>t</math>. | Every [[singular matrix]] can be written as a product of nilpotent matrices.<ref>R. Sullivan, Products of nilpotent matrices, ''Linear and Multilinear Algebra'', Vol. 56, No. 3</ref> | A nilpotent matrix is a special case of a [[convergent matrix]]. }} ==Generalizations== A [[linear operator]] <math>T</math> is '''locally nilpotent''' if for every vector <math>v</math>, there exists a <math>k\in\mathbb{N}</math> such that :<math>T^k(v) = 0.\!\,</math> For operators on a finite-dimensional vector space, local nilpotence is equivalent to nilpotence. ==Notes== <references /> ==References== * {{citation | first1 = Raymond A. | last1 = Beauregard | first2 = John B. | last2 = Fraleigh | year = 1973 | isbn = 0-395-14017-X | title = A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields | publisher = [[Houghton Mifflin Co.]] | location = Boston | url-access = registration | url = https://archive.org/details/firstcourseinlin0000beau }} *{{citation | first = I. N. | last = Herstein | author-link= Israel Nathan Herstein | year = 1975 | title = Topics In Algebra | edition= 2nd | publisher = [[John Wiley & Sons]] }} * {{ citation | first1 = Evar D. | last1 = Nering | year = 1970 | title = Linear Algebra and Matrix Theory | edition = 2nd | publisher = [[John Wiley & Sons|Wiley]] | location = New York | lccn = 76091646 }} ==External links== * [http://planetmath.org/nilpotentmatrix Nilpotent matrix] and [http://planetmath.org/nilpotenttransformation nilpotent transformation] on [[PlanetMath]]. {{Matrix classes}} [[Category:Matrices (mathematics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite web
(
edit
)
Template:Harvtxt
(
edit
)
Template:Matrix classes
(
edit
)
Template:Short description
(
edit
)
Template:Unordered list
(
edit
)
Template:Unreferenced section
(
edit
)