Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Nitrene
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Molecule containing a nitrogen atom with four unbonded electrons (:Ṅ·)}} {{Use dmy dates|date=February 2021}} [[File:Nitrene triplet.svg|thumb|115px|right|The generic structure of a nitrene group]] In [[chemistry]], a '''nitrene''' or '''imene''' ({{chem2|R\s:Ṅ*}}) is the [[nitrogen]] analogue of a [[carbene]]. The nitrogen atom is uncharged and [[valence (chemistry)#monovalent|monovalent]],<ref>{{GoldBookRef|file=N04145|title=nitrenes}}</ref> so it has only 6 [[electron]]s in its valence level—two [[covalent bond]]ed and four non-bonded electrons. It is therefore considered an [[electrophile]] due to the [[octet rule|unsatisfied octet]]. A nitrene is a [[reactive intermediate]] and is involved in many [[chemical reaction]]s.<ref>{{cite book|editor-first=W. |editor-last=Lwowski |title=Nitrenes |date=1970 |publisher=Interscience |location=New York}}</ref><ref>{{cite book|first=C. |last=Wentrup |title=Reactive Intermediates |date=1984 |publisher=Wiley |location=New York}}</ref> The simplest nitrene, HN, is called [[imidogen]], and that term is sometimes used as a synonym for the nitrene class.<ref>{{GoldBookRef|file=I02951|title=imidogens}}</ref> ==Electron configuration== In the simplest case, the linear N–H molecule (imidogen) has its nitrogen atom [[sp hybrid orbital|sp hybridized]], with two of its four non-bonded electrons as a [[lone pair]] in an sp orbital and the other two occupying a [[degenerate orbital|degenerate]] pair of [[p orbitals]]. The [[electron configuration]] is consistent with [[Hund's rule]]: the low energy form is a [[triplet state|triplet]] with one electron in each of the p orbitals and the high energy form is the [[singlet state|singlet]] with an electron pair filling one p orbital and the other p orbital vacant.<ref>{{Citation |last=Vyas |first=Shubham |title=Theory and Computation in the Study of Nitrenes and their Excited-State Photoprecursors |date=2013 |work=Nitrenes and Nitrenium Ions |pages=33–76 |url=https://onlinelibrary.wiley.com/doi/10.1002/9781118560907.ch2 |access-date=2024-12-20 |publisher=John Wiley & Sons, Ltd |language=en |doi=10.1002/9781118560907.ch2 |isbn=978-1-118-56090-7 |last2=Winter |first2=Arthur H. |last3=Hadad |first3=Christopher M.|url-access=subscription }}</ref> As with carbenes, a strong correlation exists between the [[spin density]] on the nitrogen atom which can be calculated [[in silico]] and the [[zero-field splitting parameter]] ''D'' which can be derived experimentally from [[electron spin resonance]].<ref name=Kvaskoff>{{cite journal|title=Nitrenes, Diradicals, and Ylides. Ring Expansion and Ring Opening in 2-Quinazolylnitrenes|first1=David |last1=Kvaskoff |first2=Paweł |last2=Bednarek |first3=Lisa |last3=George |first4=Kerstin |last4=Waich |first5=Curt |last5=Wentrup |journal=[[J. Org. Chem.]] |date=2006 |volume=71 |issue=11 |pages=4049–4058 |doi=10.1021/jo052541i|pmid=16709043 }}</ref> Small nitrenes such as NH or CF<sub>3</sub>N have D values around 1.8 cm<sup>−1</sup> with spin densities close to a maximum value of 2. At the lower end of the scale are molecules with low ''D'' (< 0.4) values and spin density of 1.2 to 1.4 such as 9-anthrylnitrene and 9-phenanthrylnitrene. ==Formation== Because nitrenes are so reactive, they are rarely isolated. Instead, they are formed as reactive intermediates during a reaction. There are two common ways to generate nitrenes: * From [[azide]]s by [[thermolysis]] or [[photolysis]], with expulsion of [[nitrogen]] gas. This method is analogous to the formation of [[carbene]]s from [[diazo compound]]s. * From [[isocyanate]]s, with expulsion of [[carbon monoxide]]. This method is analogous to the formation of carbenes from [[ketene]]s. Since formation of the nitrene typically starts from a diamagnetic precursor, the direct chemical product is a singlet nitrene, which then relaxes to its ground state triplet state. As has been shown for phenylazide as a model system, the direct photoproduct of photochemical-induced N<sub>2</sub> loss can either be the singlet or triplet nitrene.<ref>{{Cite journal |last=Gritsan |first=N. P. |last2=Platz |first2=M. S. |date=2006-09-01 |title=Kinetics, Spectroscopy, and Computational Chemistry of Arylnitrenes |url=https://pubs.acs.org/doi/10.1021/cr040055%2B |journal=Chemical Reviews |volume=106 |issue=9 |pages=3844–3867 |doi=10.1021/cr040055+ |issn=0009-2665|url-access=subscription }}</ref><ref>{{Cite journal |last=Soto |first=Juan |last2=Otero |first2=Juan C. |date=2019-10-24 |title=Conservation of El-Sayed’s Rules in the Photolysis of Phenyl Azide: Two Independent Decomposition Doorways for Alternate Direct Formation of Triplet and Singlet Phenylnitrene |url=https://pubs.acs.org/doi/10.1021/acs.jpca.9b06915 |journal=The Journal of Physical Chemistry A |volume=123 |issue=42 |pages=9053–9060 |doi=10.1021/acs.jpca.9b06915 |issn=1089-5639|url-access=subscription }}</ref><ref>{{Cite journal |last=Domenianni |first=Luis I. |last2=Bauer |first2=Markus |last3=Schmidt-Räntsch |first3=Till |last4=Lindner |first4=Jörg |last5=Schneider |first5=Sven |last6=Vöhringer |first6=Peter |date=2023 |title=Photoinduced Metallonitrene Formation by N2 Elimination from Azide Diradical Ligands |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.202309618 |journal=Angewandte Chemie International Edition |language=en |volume=62 |issue=42 |pages=e202309618 |doi=10.1002/anie.202309618 |issn=1521-3773|doi-access=free }}</ref> By using a triplet sensitizer, the triplet nitrene can also be formed without initial formation of the singlet nitrene.<ref>{{Cite journal |last=Murthy |first=Rajesh S. |last2=Muthukrishnan |first2=Sivaramakrishnan |last3=Rajam |first3=Sridhar |last4=Mandel |first4=Sarah M. |last5=Ault |first5=Bruce S. |last6=Gudmundsdottir |first6=Anna D. |date=2009-01-25 |title=Triplet-sensitized photolysis of alkoxycarbonyl azides in solution and matrices |url=https://linkinghub.elsevier.com/retrieve/pii/S1010603008004346 |journal=Journal of Photochemistry and Photobiology A: Chemistry |volume=201 |issue=2 |pages=157–167 |doi=10.1016/j.jphotochem.2008.10.015 |issn=1010-6030|url-access=subscription }}</ref> ==Isolated Nitrenes== Although highly reactive, some nitrenes could be isolated and characterized recently. In 2019, a triplet nitrene was isolated by Betley and Lancaster, stabilized by coordination to a copper center in a bulky ligand.<ref>{{cite journal |author=Carsch, K. M. |author2=DiMucci, I. M. |author3=Iovan, D. A. |author4=Li, A. |author5=Zheng, S.-L. |author6=Titus, C. J. |author7=Lee, S. J. |author8=Irwin, K. D. |author9=Nordlund, D. |author10=Lancaster, K. M. |author11=Betley, T. A. |title=Synthesis of a Copper-Supported Triplet Nitrene Complex Pertinent to Copper-Catalyzed Amination |journal=Science |date=2019 |volume=365 |issue=6458 |pages=1138–1143 |doi=10.1126/science.aax4423 |pmid=31515388 |pmc=7256962 |bibcode=2019Sci...365.1138C }}</ref> Later on, Schneider and coworkers characterized Pd and Pt triplet metallonitrenes, where the organic residue is replaced by a metal.<ref>{{Cite journal |last=Sun |first=Jian |last2=Abbenseth |first2=Josh |last3=Verplancke |first3=Hendrik |last4=Diefenbach |first4=Martin |last5=de Bruin |first5=Bas |last6=Hunger |first6=David |last7=Würtele |first7=Christian |last8=van Slageren |first8=Joris |last9=Holthausen |first9=Max C. |last10=Schneider |first10=Sven |date=November 2020 |title=A platinum(ii) metallonitrene with a triplet ground state |url=https://www.nature.com/articles/s41557-020-0522-4 |journal=Nature Chemistry |language=en |volume=12 |issue=11 |pages=1054–1059 |doi=10.1038/s41557-020-0522-4 |issn=1755-4349|hdl=11245.1/1d9bd22a-92be-40ac-9b3a-e6dc7df2afc9 |hdl-access=free }}</ref><ref>{{Cite journal |last=Schmidt-Räntsch |first=Till |last2=Verplancke |first2=Hendrik |last3=Lienert |first3=Jonas N. |last4=Demeshko |first4=Serhiy |last5=Otte |first5=Matthias |last6=Van Trieste III |first6=Gerard P. |last7=Reid |first7=Kaleb A. |last8=Reibenspies |first8=Joseph H. |last9=Powers |first9=David C. |last10=Holthausen |first10=Max C. |last11=Schneider |first11=Sven |date=2022 |title=Nitrogen Atom Transfer Catalysis by Metallonitrene C−H Insertion: Photocatalytic Amidation of Aldehydes |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.202115626 |journal=Angewandte Chemie International Edition |language=en |volume=61 |issue=9 |pages=e202115626 |doi=10.1002/anie.202115626 |issn=1521-3773 |pmc=9305406 |pmid=34905281}}</ref><ref>{{Cite journal |last=Schmidt-Räntsch |first=Till |last2=Verplancke |first2=Hendrik |last3=Kehl |first3=Annemarie |last4=Sun |first4=Jian |last5=Bennati |first5=Marina |last6=Holthausen |first6=Max C. |last7=Schneider |first7=Sven |date=2024-09-23 |title=C═C Dissociative Imination of Styrenes by a Photogenerated Metallonitrene |url=https://pubs.acs.org/doi/10.1021/jacsau.4c00571 |journal=JACS Au |volume=4 |issue=9 |pages=3421–3426 |doi=10.1021/jacsau.4c00571 |pmc=11423323 |pmid=39328761}}</ref> In 2024, the groups of Beckmann, Ye and Tan reported the isolation and characterization of organic triplet nitrenes, which are protected from chemical reactivity by an extremely bulky ligand.<ref>{{Cite journal |last=Janssen |first=Marvin |last2=Frederichs |first2=Thomas |last3=Olaru |first3=Marian |last4=Lork |first4=Enno |last5=Hupf |first5=Emanuel |last6=Beckmann |first6=Jens |date=2024-07-19 |title=Synthesis of a stable crystalline nitrene |url=https://www.science.org/doi/10.1126/science.adp4963 |journal=Science |volume=385 |issue=6706 |pages=318–321 |doi=10.1126/science.adp4963}}</ref><ref>{{Cite journal |last=Wang |first=Dongmin |last2=Chen |first2=Wang |last3=Chen |first3=Haonan |last4=Chen |first4=Yizhen |last5=Ye |first5=Shengfa |last6=Tan |first6=Gengwen |date=2024-11-19 |title=Isolation and characterization of a triplet nitrene |url=https://www.nature.com/articles/s41557-024-01669-9 |journal=Nature Chemistry |language=en |pages=1–6 |doi=10.1038/s41557-024-01669-9 |issn=1755-4349}}</ref> ==Reactions== Nitrene reactions include: * '''Nitrene C–H insertion'''. A nitrene can easily insert into a carbon to hydrogen [[covalent bond]] yielding an amine or amide. A singlet nitrene reacts with [[retention of configuration]]. In one study<ref>{{cite journal|title=Intermolecular Amidation of Unactivated sp<sup>2</sup> and sp<sup>3</sup> C–H Bonds via Palladium-Catalyzed Cascade C–H Activation/Nitrene Insertion |first1=Hung-Yat |last1=Thu |first2=Wing-Yiu |last2=Yu |first3=Chi-Ming |last3=Che |journal=[[J. Am. Chem. Soc.]] |date=2006 |volume=128 |issue=28 |pages=9048–9049 |doi=10.1021/ja062856v|pmid=16834374 }}</ref> a nitrene, formed by oxidation of a [[carbamate]] with [[potassium persulfate]], gives an [[insertion reaction]] into the [[palladium]] to nitrogen bond of the reaction product of [[palladium(II) acetate]] with [[pyridine|2-phenylpyridine]] to methyl ''N''-(2-pyridylphenyl)carbamate in a [[cascade reaction]]: ::[[File:NitreneAmidation2.png|400px|Nitrene amidation]] :A nitrene intermediate is suspected in this C–H insertion involving an [[oxime]], [[acetic anhydride]] leading to an [[isoindole]]:<ref>{{cite journal|title=Novel Intramolecular Reactivity of Oximes: Synthesis of Cyclic and Spiro-Fused Imines |first1=Cécile G. |last1=Savarin |first2=Christiane |last2=Grisé |first3=Jerry A. |last3=Murry |first4=Robert A. |last4=Reamer |first5=David L. |last5=Hughes |journal=[[Org. Lett.]] |date=2007 |volume=9 |issue=6 |pages=981–983 |doi=10.1021/ol0630043|pmid=17319674 }}</ref> ::[[File:NitreneOximeReaction.png|400px|Synthesis of cyclic and spiro-fused imines]] * '''Nitrene cycloaddition'''. With [[alkene]]s, nitrenes react to form [[aziridines]], very often with [[nitrenoid]] precursors such as nosyl- or tosyl-substituted [''N''-(phenylsulfonyl)imino]phenyliodinane (PhI=NNs or PhI=NTs respectively)) but the reaction is known to work directly with the [[Sulfonamide (chemistry)|sulfonamide]] in presence of a [[transition metal]] based [[catalyst]] such as [[copper]], [[palladium]], or [[gold]]:<ref>{{cite journal|title=Nitrene Transfer Reactions Catalyzed by Gold Complexes |first1=Zigang |last1=Li |first2=Xiangyu |last2=Ding |first3=Chuan |last3=He |journal=[[J. Org. Chem.]] |date=2006 |volume=71 |issue=16 |pages=5876–5880 |doi=10.1021/jo060016t|pmid=16872166 |s2cid=43641348 }}</ref><ref>{{cite journal|title=Development of the Copper-Catalyzed Olefin Aziridination Reaction |first1=David A. |last1=Evans |first2=Margaret M. |last2=Faul |first3=Mark T. |last3=Bilodeau |journal=[[J. Am. Chem. Soc.]] |date=1994 |volume=116 |issue=7 |pages=2742–2753 |doi=10.1021/ja00086a007|s2cid=55554519 }}</ref><ref>{{cite journal|title=Mechanistic Studies of Copper-Catalyzed Alkene Aziridination |first1=Peter |last1=Brandt |first2=Mikael J. |last2=Sodergren |first3=Pher G. |last3=Andersson |first4=Per-Ola |last4=Norrby |journal=[[J. Am. Chem. Soc.]] |date=2000 |volume=122 |issue=33 |pages=8013–8020|doi=10.1021/ja993246g|s2cid=98310736 }}</ref><ref>{{cite journal|title=Advances in Nitrogen Transfer Reactions Involving Aziridines |first1=Iain D. G. |last1=Watson |first2=Lily |last2=Yu |first3=Andrei K. |last3=Yudi |journal=[[Acc. Chem. Res.]] |date=2006 |volume=39 |issue=3 |pages=194–206 |doi=10.1021/ar050038m|pmid=16548508 }}</ref><ref>Reactants ''cis''-[[stilbene]] or ''trans''-stilbene, nitrene precursor ''p''-nitrosulfonamide or [[Nosylate|nosylamine]] which is oxidized by [[iodosobenzene diacetate]]. The gold catalyst is based on a [[terpyridine]] tridentate [[ligand]].</ref> ::[[File:NitreneTransferReactionsCatalyzedbyGoldComplexes.png|400px|Nitrene transfer reaction]] :In most cases, however, [''N''-(''p''-nitrophenylsulfonyl)imino]phenyliodinane (PhI=NNs) is prepared separately as follows: ::[[File:Preparation of PhINNs.png|600px|Preparation of PhINNs]] :Nitrene transfer takes place next: ::[[File:Copper catalyzed aziridination.png|600px|Nitrene transfer reaction]] :In this particular reaction both the ''[[cis isomer|cis]]''-[[stilbene]] illustrated and the [[trans isomer|''trans'']] form (not depicted) result in the same ''trans''-aziridine product, suggesting a two-step [[reaction mechanism]]. The energy difference between triplet and singlet nitrenes can be very small in some cases, allowing [[Intersystem crossing|interconversion]] at room temperature. Triplet nitrenes are thermodynamically more stable but react stepwise allowing free rotation and thus producing a mixture of stereochemistry.<ref>{{cite book|title=Aziridines and Epoxides in Organic Synthesis |editor-first=Andrei K. |editor-last=Yudin |date=2007 |page=120 |isbn=978-3-527-31213-9}}</ref> * '''Arylnitrene ring-expansion and ring-contraction''': Aryl nitrenes show ring expansion to 7-membered ring [[cumulene]]s, ring opening reactions and nitrile formations many times in complex reaction paths. For instance the azide '''2''' in the scheme below<ref name=Kvaskoff /> trapped in an [[argon]] [[Matrix Isolation|matrix]] at 20 K on photolysis expels nitrogen to the triplet nitrene '''4''' (observed experimentally with [[electron spin resonance|ESR]] and [[ultraviolet-visible spectroscopy]]) which is in equilibrium with the ring-expansion product '''6'''. :[[File:NitreneRingContraction.png|400px|Nitrene ring-expansion and ring-contraction]] :The nitrene ultimately converts to the ring-opened [[nitrile]] '''5''' through the [[diradical]] intermediate '''7'''. In a high-temperature reaction, [[flash vacuum thermolysis|FVT]] at 500–600 °C also yields the nitrile '''5''' in 65% yield.<ref>The [[quinazoline]] is prepared from the corresponding bromide and [[sodium azide]]. The azide is in equilibrium with the [[tetrazole]] '''3'''.</ref> Arylnitrene internalization in combination with carbon deletion strategies have been used for aromatic carbon-nitrogen swap to generate [[pyridines]] from phenyl azides.<ref name="Sundberg 1972">{{cite journal |last1=Sundberg |first1=Richard J. |last2=Suter |first2=Stuart R. |last3=Brenner |first3=Martin |title=Photolysis of 0-substituted aryl azides in diethylamine. Formation and autoxidation of 2-diethylamino-1H-azepine intermediates |journal=[[Journal of the American Chemical Society]] |date=1972 |volume=94 |issue=2 |pages=513–520 |doi=10.1021/ja00757a032}}</ref><ref name="Burns 2022">{{cite journal |last1=Patel |first1=Sajan C. |last2=Burns |first2=Noah Z. |title=Conversion of Aryl Azides to Aminopyridines |journal=[[Journal of the American Chemical Society]] |date=2022 |volume=144 |issue=39 |pages=17797–17802 |doi=10.1021/jacs.2c08464}}</ref><ref name="Levin 2023">{{cite journal |last1=Pearson |first1=Tyler J. |last2=Shimazumi |first2=Ryoma |last3=Driscoll |first3=Julia L. |last4=Dherange |first4=Balu D. |last5=Park |first5=Dong-Il |last6=Levin |first6=Mark D. |title=Aromatic nitrogen scanning by <i>ipso</i>-selective nitrene internalization |journal=[[Science_(journal)|Science]] |date=2023 |volume=381 |issue=6665 |pages=1474–1479 |doi=10.1126/science.adj5331|pmc=10910605 }}</ref> ==Nitreno radicals== For several compounds containing both a nitrene group and a [[free radical]] group an ESR high-spin quartet has been recorded (matrix, cryogenic temperatures). One of these has an [[amine oxide]] radical group incorporated,<ref>{{cite journal|title=Heterospin organic molecules: nitrene–radical linkages |journal=[[Polyhedron (journal)|Polyhedron]] |volume=20 |issue=11–14 |date=30 May 2001 |pages=1647–1652 |first1=Paul M. |last1=Lahti |first2=Burak |last2=Esat |first3=Yi |last3=Liao |first4=Paul |last4=Serwinski |first5=Jiang |last5=Lan |first6=Richard |last6=Walton |doi=10.1016/S0277-5387(01)00667-2}}</ref> another system has a carbon radical group.<ref>{{cite journal|title=2,3,5,6-Tetrafluorophenylnitren-4-yl: Electron Paramagnetic Resonance Spectroscopic Characterization of a Quartet-Ground-State Nitreno Radical |first1=Wolfram |last1=Sander |first2=Dirk |last2=Grote |first3=Simone |last3=Kossmann |first4=Frank |last4=Neese |journal=[[J. Am. Chem. Soc.]] |date=2008 |volume=130 |issue=13 |pages=4396–4403 |doi=10.1021/ja078171s|pmid=18327939 }}</ref> :[[File:NitreneTriRadical.svg|Nitrene radical]] In this system one of the nitrogen unpaired electrons is delocalized in the aromatic ring making the compound a σ–σ–π triradical. A [[carbene]] nitrogen radical (imidyl radical) [[resonance structure]] makes a contribution to the total electronic picture. ==References== {{Reflist}} {{Authority control}} {{Functional group}} [[Category:Reactive intermediates]] [[Category:Free radicals]] [[Category:Octet-deficient functional groups]] [[Category:Nitrogen compounds]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Chem2
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Functional group
(
edit
)
Template:GoldBookRef
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Use dmy dates
(
edit
)