Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Noncentral F-distribution
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Probability distribution generalizing the F-distribution with a noncentrality parameter}} {{DISPLAYTITLE:Noncentral ''F''-distribution}} In [[probability theory]] and [[statistics]], the '''noncentral ''F''-distribution''' is a [[continuous probability distribution]] that is a [[noncentral distribution|noncentral generalization]] of the (ordinary) [[F-distribution|''F''-distribution]]. It describes the distribution of the quotient (''X''/''n''<sub>1</sub>)/(''Y''/''n''<sub>2</sub>), where the numerator ''X'' has a [[noncentral chi-squared distribution]] with ''n''<sub>1</sub> degrees of freedom and the denominator ''Y'' has a central [[chi-squared distribution]] with ''n''<sub>2</sub> degrees of freedom. It is also required that ''X'' and ''Y'' are [[statistical independence|statistically independent]] of each other. It is the distribution of the [[test statistic]] in [[analysis of variance]] problems when the [[null hypothesis]] is false. The noncentral ''F''-distribution is used to find the [[statistical power|power function]] of such a test. == Occurrence and specification == If <math>X</math> is a [[Noncentral chi-squared distribution|noncentral chi-squared]] random variable with noncentrality parameter <math>\lambda</math> and <math>\nu_1</math> degrees of freedom, and <math>Y</math> is a [[Chi-squared distribution|chi-squared]] random variable with <math>\nu_2</math> degrees of freedom that is [[statistical independence|statistically independent]] of <math>X</math>, then :<math> F=\frac{X/\nu_1}{Y/\nu_2} </math> is a noncentral ''F''-distributed random variable. The [[probability density function]] (pdf) for the noncentral ''F''-distribution is<ref>{{cite book |first=S. |last=Kay |title=Fundamentals of Statistical Signal Processing: Detection Theory |location=New Jersey |publisher=Prentice Hall |year=1998 |page=29 |isbn=0-13-504135-X }}</ref> :<math> p(f) =\sum\limits_{k=0}^\infty\frac{e^{-\lambda/2}(\lambda/2)^k}{ B\left(\frac{\nu_2}{2},\frac{\nu_1}{2}+k\right) k!} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}+k} \left(\frac{\nu_2}{\nu_2+\nu_1f}\right)^{\frac{\nu_1+\nu_2}{2}+k}f^{\nu_1/2-1+k} </math> when <math>f\ge0</math> and zero otherwise. The degrees of freedom <math>\nu_1</math> and <math>\nu_2</math> are positive. The term <math>B(x,y)</math> is the [[beta function]], where :<math> B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}. </math> The [[cumulative distribution function]] for the noncentral ''F''-distribution is :<math> F(x\mid d_1,d_2,\lambda)=\sum\limits_{j=0}^\infty\left(\frac{\left(\frac{1}{2}\lambda\right)^j}{j!}e^{-\lambda/2} \right)I\left(\frac{d_1x}{d_2 + d_1x}\bigg|\frac{d_1}{2}+j,\frac{d_2}{2}\right) </math> where <math>I</math> is the [[regularized incomplete beta function]]. The mean and variance of the noncentral ''F''-distribution are :<math> \operatorname{E}[F] \quad \begin{cases} = \frac{\nu_2(\nu_1+\lambda)}{\nu_1(\nu_2-2)} & \text{if } \nu_2>2\\ \text{does not exist} & \text{if } \nu_2\le2\\ \end{cases} </math> and :<math> \operatorname{Var}[F] \quad \begin{cases} = 2\frac{(\nu_1+\lambda)^2+(\nu_1+2\lambda)(\nu_2-2)}{(\nu_2-2)^2(\nu_2-4)}\left(\frac{\nu_2}{\nu_1}\right)^2 & \text{if } \nu_2>4\\ \text{does not exist} & \text{if } \nu_2\le4.\\ \end{cases} </math> == Special cases == When ''λ'' = 0, the noncentral ''F''-distribution becomes the [[F-distribution|''F''-distribution]]. == Related distributions == ''Z'' has a [[noncentral chi-squared distribution]] if : <math> Z=\lim_{\nu_2\to\infty}\nu_1 F </math> where ''F'' has a noncentral ''F''-distribution. See also [[noncentral t-distribution]]. == Implementations == The noncentral ''F''-distribution is implemented in the [[R (programming language)|R]] language (e.g., pf function), in [[MATLAB]] (ncfcdf, ncfinv, ncfpdf, ncfrnd and ncfstat functions in the statistics toolbox) in [[Mathematica]] (NoncentralFRatioDistribution function), in [[NumPy]] (random.noncentral_f), and in [[Boost C++ Libraries]].<ref>{{cite web |url=http://www.boost.org/doc/libs/1_39_0/libs/math/doc/sf_and_dist/html/math_toolkit/dist/dist_ref/dists/nc_f_dist.html |title=Noncentral F Distribution: Boost 1.39.0 |author=John Maddock |author2=Paul A. Bristow |author3=Hubert Holin |author4=Xiaogang Zhang |author5=Bruno Lalande |author6=Johan Råde |work=Boost.org |access-date=20 August 2011}}</ref> A collaborative wiki page implements an interactive online calculator, programmed in the [[R (programming language)|R language]], for the noncentral t, [[Noncentral chi-squared distribution|chi-squared]], and F distributions, at the Institute of Statistics and Econometrics of the [[Humboldt University of Berlin]].<ref>{{cite web |url=http://mars.wiwi.hu-berlin.de/mediawiki/slides/index.php/Comparison_of_noncentral_and_central_distributions |title=Comparison of noncentral and central distributions |author=Sigbert Klinke |date=10 December 2008 |publisher=Humboldt-Universität zu Berlin}}</ref> == Notes == <references/> == References == * {{cite web |url=http://mathworld.wolfram.com/NoncentralF-Distribution.html |title=Noncentral ''F''-distribution |first=Eric W.|last=Weisstein |author-link=Eric W. Weisstein |work=[[MathWorld]] |publisher=Wolfram Research, Inc |access-date=20 August 2011|display-authors=etal}} {{Probability distributions}} [[Category:Continuous distributions]] [[Category:Noncentral distributions|F]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Probability distributions
(
edit
)
Template:Short description
(
edit
)