Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Noncototient
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Positive integers with specific properties}} In [[number theory]], a '''noncototient''' is a [[positive integer]] {{mvar|n}} that cannot be expressed as the difference between a positive integer {{mvar|m}} and the number of [[coprime]] integers below it. That is, {{math|1=''m'' − ''φ''(''m'') = ''n''}}, where {{mvar|φ}} stands for [[Euler's totient function]], has no solution for {{mvar|m}}. The ''[[cototient]]'' of {{mvar|n}} is defined as {{math|''n'' − ''φ''(''n'')}}, so a '''noncototient''' is a number that is never a cototient. It is conjectured that all noncototients are even. This follows from a modified form of the slightly stronger version of the [[Goldbach conjecture]]: if the even number {{mvar|n}} can be represented as a sum of two distinct primes {{mvar|p}} and {{mvar|q}}, then <math display=block>\begin{align} pq - \varphi(pq) &= pq - (p-1)(q-1) \\ &= p + q - 1 \\ &= n - 1. \end{align}</math> It is expected that every even number larger than 6 is a sum of two distinct primes, so probably no odd number larger than 5 is a noncototient. The remaining odd numbers are covered by the observations {{math|1=1 = 2 – ''φ''(2)}}, {{math|1=3 = 9 – ''φ''(9)}}, and {{math|1=5 = 25 – ''φ''(25)}}. For even numbers, it can be shown <math display=block>\begin{align} 2pq - \varphi(2pq) &= 2pq - (p-1)(q-1) \\ &= pq + p + q - 1 \\ &= (p+1)(q+1) - 2 \end{align}</math> Thus, all even numbers {{mvar|n}} such that {{math|''n'' + 2}} can be written as {{math|(''p'' + 1)(''q'' + 1)}} with {{mvar|p, q}} primes are cototients. The first few noncototients are :[[10 (number)|10]], [[26 (number)|26]], [[34 (number)|34]], [[50 (number)|50]], [[52 (number)|52]], [[58 (number)|58]], [[86 (number)|86]], [[100 (number)|100]], [[116 (number)|116]], [[122 (number)|122]], [[130 (number)|130]], [[134 (number)|134]], [[146 (number)|146]], [[154 (number)|154]], [[170 (number)|170]], [[172 (number)|172]], 186, 202, 206, 218, [[222 (number)|222]], 232, 244, 260, 266, 268, 274, 290, 292, 298, 310, 326, 340, 344, 346, 362, 366, 372, 386, 394, 404, 412, 436, 466, 470, 474, 482, 490, ... {{OEIS|id=A005278}} The cototient of {{mvar|n}} are :0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, 1, 8, 7, 8, 1, 12, 1, 12, 9, 12, 1, 16, 5, 14, 9, 16, 1, 22, 1, 16, 13, 18, 11, 24, 1, 20, 15, 24, 1, 30, 1, 24, 21, 24, 1, 32, 7, 30, 19, 28, 1, 36, 15, 32, 21, 30, 1, 44, 1, 32, 27, 32, 17, 46, 1, 36, 25, 46, 1, 48, ... {{OEIS|id=A051953}} Least {{mvar|k}} such that the cototient of {{mvar|k}} is {{mvar|n}} are (start with {{math|1=''n'' = 0}}, 0 if no such {{mvar|k}} exists) :1, 2, 4, 9, 6, 25, 10, 15, 12, 21, 0, 35, 18, 33, 26, 39, 24, 65, 34, 51, 38, 45, 30, 95, 36, 69, 0, 63, 52, 161, 42, 87, 48, 93, 0, 75, 54, 217, 74, 99, 76, 185, 82, 123, 60, 117, 66, 215, 72, 141, 0, ... {{OEIS|id=A063507}} Greatest {{mvar|k}} such that the cototient of {{mvar|k}} is {{mvar|n}} are (start with {{math|1=''n'' = 0}}, 0 if no such {{mvar|k}} exists) :1, ∞, 4, 9, 8, 25, 10, 49, 16, 27, 0, 121, 22, 169, 26, 55, 32, 289, 34, 361, 38, 85, 30, 529, 46, 133, 0, 187, 52, 841, 58, 961, 64, 253, 0, 323, 68, 1369, 74, 391, 76, 1681, 82, 1849, 86, 493, 70, 2209, 94, 589, 0, ... {{OEIS|id=A063748}} Number of {{mvar|k}}s such that {{math|''k'' − ''φ''(''k'')}} is {{mvar|n}} are (start with {{math|1=''n'' = 0}}) :1, ∞, 1, 1, 2, 1, 1, 2, 3, 2, 0, 2, 3, 2, 1, 2, 3, 3, 1, 3, 1, 3, 1, 4, 4, 3, 0, 4, 1, 4, 3, 3, 4, 3, 0, 5, 2, 2, 1, 4, 1, 5, 1, 4, 2, 4, 2, 6, 5, 5, 0, 3, 0, 6, 2, 4, 2, 5, 0, 7, 4, 3, 1, 8, 4, 6, 1, 3, 1, 5, 2, 7, 3, ... {{OEIS|id=A063740}} [[Paul Erdős|Erdős]] (1913–1996) and [[Wacław Sierpiński|Sierpinski]] (1882–1969) asked whether there exist infinitely many noncototients. This was finally answered in the affirmative by Browkin and Schinzel (1995), who showed every member of the infinite family <math> 2^k \cdot 509203</math> is an example (See [[Riesel number]]). Since then other infinite families, of roughly the same form, have been given by Flammenkamp and Luca (2000). {| class="wikitable mw-collapsible mw-collapsed" |+ class="nowrap" | Cototients of {{mvar|n}} from 1-144 ! {{mvar|n}} !! Numbers {{mvar|k}} such that {{math|1=''k'' − ''φ''(''k'') = ''n''}} |- ! 1 | all primes |- ! 2 | 4 |- ! 3 | 9 |- ! 4 | 6, 8 |- ! 5 | 25 |- ! 6 | 10 |- ! 7 | 15, 49 |- ! 8 | 12, 14, 16 |- ! 9 | 21, 27 |- ! 10 | |- ! 11 | 35, 121 |- ! 12 | 18, 20, 22 |- ! 13 | 33, 169 |- ! 14 | 26 |- ! 15 | 39, 55 |- ! 16 | 24, 28, 32 |- ! 17 | 65, 77, 289 |- ! 18 | 34 |- ! 19 | 51, 91, 361 |- ! 20 | 38 |- ! 21 | 45, 57, 85 |- ! 22 | 30 |- ! 23 | 95, 119, 143, 529 |- ! 24 | 36, 40, 44, 46 |- ! 25 | 69, 125, 133 |- ! 26 | |- ! 27 | 63, 81, 115, 187 |- ! 28 | 52 |- ! 29 | 161, 209, 221, 841 |- ! 30 | 42, 50, 58 |- ! 31 | 87, 247, 961 |- ! 32 | 48, 56, 62, 64 |- ! 33 | 93, 145, 253 |- ! 34 | |- ! 35 | 75, 155, 203, 299, 323 |- ! 36 | 54, 68 |- ! 37 | 217, 1369 |- ! 38 | 74 |- ! 39 | 99, 111, 319, 391 |- ! 40 | 76 |- ! 41 | 185, 341, 377, 437, 1681 |- ! 42 | 82 |- ! 43 | 123, 259, 403, 1849 |- ! 44 | 60, 86 |- ! 45 | 117, 129, 205, 493 |- ! 46 | 66, 70 |- ! 47 | 215, 287, 407, 527, 551, 2209 |- ! 48 | 72, 80, 88, 92, 94 |- ! 49 | 141, 301, 343, 481, 589 |- ! 50 | |- ! 51 | 235, 451, 667 |- ! 52 | |- ! 53 | 329, 473, 533, 629, 713, 2809 |- ! 54 | 78, 106 |- ! 55 | 159, 175, 559, 703 |- ! 56 | 98, 104 |- ! 57 | 105, 153, 265, 517, 697 |- ! 58 | |- ! 59 | 371, 611, 731, 779, 851, 899, 3481 |- ! 60 | 84, 100, 116, 118 |- ! 61 | 177, 817, 3721 |- ! 62 | 122 |- ! 63 | 135, 147, 171, 183, 295, 583, 799, 943 |- ! 64 | 96, 112, 124, 128 |- ! 65 | 305, 413, 689, 893, 989, 1073 |- ! 66 | 90 |- ! 67 | 427, 1147, 4489 |- ! 68 | 134 |- ! 69 | 201, 649, 901, 1081, 1189 |- ! 70 | 102, 110 |- ! 71 | 335, 671, 767, 1007, 1247, 1271, 5041 |- ! 72 | 108, 136, 142 |- ! 73 | 213, 469, 793, 1333, 5329 |- ! 74 | 146 |- ! 75 | 207, 219, 275, 355, 1003, 1219, 1363 |- ! 76 | 148 |- ! 77 | 245, 365, 497, 737, 1037, 1121, 1457, 1517 |- ! 78 | 114 |- ! 79 | 511, 871, 1159, 1591, 6241 |- ! 80 | 152, 158 |- ! 81 | 189, 237, 243, 781, 1357, 1537 |- ! 82 | 130 |- ! 83 | 395, 803, 923, 1139, 1403, 1643, 1739, 1763, 6889 |- ! 84 | 164, 166 |- ! 85 | 165, 249, 325, 553, 949, 1273 |- ! 86 | |- ! 87 | 415, 1207, 1711, 1927 |- ! 88 | 120, 172 |- ! 89 | 581, 869, 1241, 1349, 1541, 1769, 1829, 1961, 2021, 7921 |- ! 90 | 126, 178 |- ! 91 | 267, 1027, 1387, 1891 |- ! 92 | 132, 140 |- ! 93 | 261, 445, 913, 1633, 2173 |- ! 94 | 138, 154 |- ! 95 | 623, 1079, 1343, 1679, 1943, 2183, 2279 |- ! 96 | 144, 160, 176, 184, 188 |- ! 97 | 1501, 2077, 2257, 9409 |- ! 98 | 194 |- ! 99 | 195, 279, 291, 979, 1411, 2059, 2419, 2491 |- ! 100 | |- ! 101 | 485, 1157, 1577, 1817, 2117, 2201, 2501, 2537, 10201 |- ! 102 | 202 |- ! 103 | 303, 679, 2263, 2479, 2623, 10609 |- ! 104 | 206 |- ! 105 | 225, 309, 425, 505, 1513, 1909, 2773 |- ! 106 | 170 |- ! 107 | 515, 707, 1067, 1691, 2291, 2627, 2747, 2867, 11449 |- ! 108 | 156, 162, 212, 214 |- ! 109 | 321, 721, 1261, 2449, 2701, 2881, 11881 |- ! 110 | 150, 182, 218 |- ! 111 | 231, 327, 535, 1111, 2047, 2407, 2911, 3127 |- ! 112 | 196, 208 |- ! 113 | 545, 749, 1133, 1313, 1649, 2573, 2993, 3053, 3149, 3233, 12769 |- ! 114 | 226 |- ! 115 | 339, 475, 763, 1339, 1843, 2923, 3139 |- ! 116 | |- ! 117 | 297, 333, 565, 1177, 1717, 2581, 3337 |- ! 118 | 174, 190 |- ! 119 | 539, 791, 1199, 1391, 1751, 1919, 2231, 2759, 3071, 3239, 3431, 3551, 3599 |- ! 120 | 168, 200, 232, 236 |- ! 121 | 1331, 1417, 1957, 3397 |- ! 122 | |- ! 123 | 1243, 1819, 2323, 3403, 3763 |- ! 124 | 244 |- ! 125 | 625, 1469, 1853, 2033, 2369, 2813, 3293, 3569, 3713, 3869, 3953 |- ! 126 | 186 |- ! 127 | 255, 2071, 3007, 4087, 16129 |- ! 128 | 192, 224, 248, 254, 256 |- ! 129 | 273, 369, 381, 1921, 2461, 2929, 3649, 3901, 4189 |- ! 130 | |- ! 131 | 635, 2147, 2507, 2987, 3131, 3827, 4187, 4307, 4331, 17161 |- ! 132 | 180, 242, 262 |- ! 133 | 393, 637, 889, 3193, 3589, 4453 |- ! 134 | |- ! 135 | 351, 387, 575, 655, 2599, 3103, 4183, 4399 |- ! 136 | 268 |- ! 137 | 917, 1397, 3161, 3317, 3737, 3977, 4661, 4757, 18769 |- ! 138 | 198, 274 |- ! 139 | 411, 1651, 3379, 3811, 4171, 4819, 4891, 19321 |- ! 140 | 204, 220, 278 |- ! 141 | 285, 417, 685, 1441, 3277, 4141, 4717, 4897 |- ! 142 | 230, 238 |- ! 143 | 363, 695, 959, 1703, 2159, 3503, 3959, 4223, 4343, 4559, 5063, 5183 |- ! 144 | 216, 272, 284 |} ==References== * {{cite journal | zbl=0820.11003 | last1=Browkin | first1=J. | last2=Schinzel | first2=A. | title=On integers not of the form n-φ(n) | journal=Colloq. Math. | volume=68 | number=1 | pages=55–58 | year=1995 | doi=10.4064/cm-68-1-55-58 | doi-access=free }} * {{cite journal | zbl=0965.11003 | last1=Flammenkamp | first1=A. | last2=Luca | first2=F. | title=Infinite families of noncototients | journal=Colloq. Math. | volume=86 | number=1 | pages=37–41 | year=2000 | doi=10.4064/cm-86-1-37-41 | doi-access=free }} * {{cite book |last=Guy | first=Richard K. | author-link=Richard K. Guy | title=Unsolved problems in number theory | publisher=[[Springer-Verlag]] |edition=3rd | year=2004 |isbn=978-0-387-20860-2 | zbl=1058.11001 | pages=138–142}} == External links == * [http://mathworld.wolfram.com/Noncototient.html Noncototient definition from MathWorld] {{Totient}} {{Classes of natural numbers}} [[Category:Integer sequences]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:OEIS
(
edit
)
Template:Short description
(
edit
)
Template:Totient
(
edit
)