Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Omega constant
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|1=Solution to x * e^x = 1}} {{about|a specific value of Lambert's W function|other omega constants|omega (disambiguation)#Mathematics}} The '''omega constant''' is a [[mathematical constant]] defined as the unique [[real number]] that satisfies the equation :<math>\Omega e^\Omega = 1.</math> It is the value of {{math|''W''(1)}}, where {{mvar|W}} is [[Lambert W function|Lambert's {{mvar|W}} function]]. The name is derived from the alternate name for Lambert's {{mvar|W}} function, the ''omega function''. The numerical value of {{math|Ω}} is given by :{{math|1=Ω = {{gaps|0.56714|32904|09783|87299|99686|62210|...}}}} {{OEIS|id=A030178}}. :{{math|1=1/Ω = {{gaps|1.76322|28343|51896|71022|52017|76951|...}}}} {{OEIS|id=A030797}}. == Properties == === Fixed point representation === The defining identity can be expressed, for example, as :<math>\ln \left(\tfrac{1}{\Omega} \right)=\Omega.</math> or :<math>-\ln(\Omega)=\Omega</math> as well as :<math>e^{-\Omega}= \Omega.</math> === Computation === One can calculate {{math|Ω}} [[iterative method|iteratively]], by starting with an initial guess {{math|Ω<sub>0</sub>}}, and considering the [[sequence]] :<math>\Omega_{n+1}=e^{-\Omega_n}.</math> This sequence will [[limit of a sequence|converge]] to {{math|Ω}} as {{mvar|n}} approaches infinity. This is because {{math|Ω}} is an [[Fixed point (mathematics)|attractive fixed point]] of the function {{math|''e''<sup>−''x''</sup>}}. It is much more efficient to use the iteration :<math>\Omega_{n+1}=\frac{1+\Omega_n}{1+e^{\Omega_n}},</math> because the function :<math>f(x)=\frac{1+x}{1+e^x},</math> in addition to having the same fixed point, also has a derivative that vanishes there. This guarantees quadratic convergence; that is, the number of correct digits is roughly doubled with each iteration. Using [[Halley's method]], {{math|Ω}} can be approximated with cubic convergence (the number of correct digits is roughly tripled with each iteration): (see also {{section link|Lambert W function|Numerical evaluation}}). :<math>\Omega_{j+1}=\Omega_j-\frac{\Omega_j e^{\Omega_j}-1}{e^{\Omega_j}(\Omega_j+1)-\frac{(\Omega_j+2)(\Omega_je^{\Omega_j}-1)}{2\Omega_j+2}}.</math> === Integral representations === An identity due to Victor Adamchik{{cn|date=February 2025}} is given by the relationship :<math>\int_{-\infty}^\infty\frac{dt}{(e^t-t)^2+\pi^2} = \frac{1}{1+\Omega}.</math> Other relations due to Mező<ref>{{cite web|first=István|last=Mező|title=An integral representation for the principal branch of the Lambert ''W'' function|url=https://sites.google.com/site/istvanmezo81/other-things |access-date=24 April 2022}}</ref><ref>{{cite arXiv | last = Mező | first = István | title = An integral representation for the Lambert W function | date = 2020| class = math.CA | eprint = 2012.02480 }}.</ref> and Kalugin-Jeffrey-Corless<ref>{{cite arXiv | first1=German A. | last1=Kalugin | first2=David J. | last2=Jeffrey | first3=Robert M. | last3=Corless | title = Stieltjes, Poisson and other integral representations for functions of Lambert W | date = 2011| class = math.CV | eprint = 1103.5640 }}.</ref> are: :<math>\Omega=\frac{1}{\pi}\operatorname{Re}\int_0^\pi\log\left(\frac{e^{e^{it}}-e^{-it}}{e^{e^{it}}-e^{it}}\right) dt,</math> :<math>\Omega=\frac{1}{\pi}\int_0^\pi\log\left(1+\frac{\sin t}{t}e^{t\cot t}\right)dt.</math> The latter two identities can be extended to other values of the {{mvar|W}} function (see also {{section link|Lambert W function|Representations}}). ===Transcendence=== The constant {{math|Ω}} is [[transcendental number|transcendental]]. This can be seen as a direct consequence of the [[Lindemann–Weierstrass theorem]]. For a contradiction, suppose that {{math|Ω}} is algebraic. By the theorem, {{math|''e''<sup>−Ω</sup>}} is transcendental, but {{math|1=Ω = ''e''<sup>−Ω</sup>}}, which is a contradiction. Therefore, it must be transcendental.<ref name="Mezo">{{cite journal |last1=Mező |first1=István |last2=Baricz |first2=Árpád |title=On the Generalization of the Lambert W Function |journal=Transactions of the American Mathematical Society |date=November 2017 |volume=369 |issue=11 |page=7928 |doi=10.1090/tran/6911 |url=https://www.ams.org/journals/tran/2017-369-11/S0002-9947-2017-06911-7/S0002-9947-2017-06911-7.pdf |access-date=28 April 2023}}</ref> ==References== {{Reflist}} ==External links== * {{MathWorld|urlname=OmegaConstant|title=Omega Constant}} *{{citation|title=Omega constant (1,000,000 digits)|url=http://ankokudan.org/d/d.htm?mathlistindex-e.html|work=[[Darkside communication group]] (in Japan) |access-date=2017-12-25}} {{Irrational number}} [[Category:Mathematical constants|Omega]] [[Category:Articles containing proofs]] [[Category:Real transcendental numbers]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:About
(
edit
)
Template:Citation
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Cn
(
edit
)
Template:Irrational number
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Mvar
(
edit
)
Template:OEIS
(
edit
)
Template:Reflist
(
edit
)
Template:Section link
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)