Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Operator norm
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Measure of the "size" of linear operators}} In [[mathematics]], the '''operator norm''' measures the "size" of certain [[linear operator]]s by assigning each a [[real number]] called its {{em|operator norm}}. Formally, it is a [[Norm (mathematics)|norm]] defined on the space of [[bounded linear operator]]s between two given [[normed vector space]]s. Informally, the operator norm <math>\|T\|</math> of a linear map <math>T : X \to Y</math> is the maximum factor by which it "lengthens" vectors. == Introduction and definition == Given two normed vector spaces <math>V</math> and <math>W</math> (over the same base [[Field (mathematics)|field]], either the [[real number]]s <math>\R</math> or the [[complex number]]s <math>\Complex</math>), a [[linear map]] <math>A : V \to W</math> is continuous [[if and only if]] there exists a real number <math>c</math> such that<ref>{{Citation|last1=Kreyszig|first1=Erwin|title=Introductory functional analysis with applications|publisher=John Wiley & Sons|year=1978|isbn=9971-51-381-1|page=97}}</ref> <math display="block">\|Av\| \leq c \|v\| \quad \text{ for all } v\in V.</math> The norm on the left is the one in <math>W</math> and the norm on the right is the one in <math>V</math>. Intuitively, the continuous operator <math>A</math> never increases the length of any vector by more than a factor of <math>c.</math> Thus the [[Image (mathematics)|image]] of a bounded set under a continuous operator is also bounded. Because of this property, the continuous linear operators are also known as [[bounded operator]]s. In order to "measure the size" of <math>A,</math> one can take the [[infimum]] of the numbers <math>c</math> such that the above inequality holds for all <math>v \in V.</math> This number represents the maximum scalar factor by which <math>A</math> "lengthens" vectors. In other words, the "size" of <math>A</math> is measured by how much it "lengthens" vectors in the "biggest" case. So we define the operator norm of <math>A</math> as <math display="block">\|A\|_\text{op} = \inf\{ c \geq 0 : \|Av\| \leq c \|v\| \text{ for all } v \in V \}.</math> The infimum is attained as the set of all such <math>c</math> is [[Closed set|closed]], [[Empty set|nonempty]], and [[Bounded set|bounded]] from below.<ref>See e.g. Lemma 6.2 of {{harvtxt|Aliprantis|Border|2007}}.</ref> It is important to bear in mind that this operator norm depends on the choice of norms for the normed vector spaces <math>V</math> and <math>W</math>. == Examples == Every real <math>m</math>-by-<math>n</math> [[matrix (mathematics)|matrix]] corresponds to a linear map from <math>\R^n</math> to <math>\R^m.</math> Each pair of the plethora of (vector) [[norm (mathematics)|norms]] applicable to real vector spaces induces an operator norm for all <math>m</math>-by-<math>n</math> matrices of real numbers; these induced norms form a subset of [[matrix norm]]s. If we specifically choose the [[Euclidean norm]] on both <math>\R^n</math> and <math>\R^m,</math> then the matrix norm given to a matrix <math>A</math> is the [[square root]] of the largest [[eigenvalue]] of the matrix <math>A^{*} A</math> (where <math>A^{*}</math> denotes the [[conjugate transpose]] of <math>A</math>).<ref>{{Cite web|url=https://mathworld.wolfram.com/OperatorNorm.html|title=Operator Norm|last=Weisstein|first=Eric W.|authorlink = Eric W. Weisstein|website=mathworld.wolfram.com|language=en|access-date=2020-03-14}}</ref> This is equivalent to assigning the largest [[singular value]] of <math>A.</math> Passing to a typical infinite-dimensional example, consider the [[sequence space]] <math>\ell^2,</math> which is an [[Lp space|L<sup>''p''</sup> space]], defined by <math display="block">\ell^2 = \left\{ (a_n)_{n \geq 1} : \; a_n \in \Complex, \; \sum_n |a_n|^2 < \infty \right\}.</math> This can be viewed as an infinite-dimensional analogue of the [[Euclidean space]] <math>\Complex^n.</math> Now consider a bounded sequence <math>s_{\bull} = \left(s_n\right)_{n=1}^\infty.</math> The sequence <math>s_{\bull}</math> is an element of the space <math>\ell^\infty,</math> with a norm given by <math display="block">\left\|s_{\bull}\right\|_\infty = \sup _n \left|s_n\right|.</math> Define an operator <math>T_s</math> by pointwise multiplication: <math display="block">\left(a_n\right)_{n=1}^{\infty} \;\stackrel{T_s}{\mapsto}\;\ \left(s_n \cdot a_n\right)_{n=1}^{\infty}.</math> The operator <math>T_s</math> is bounded with operator norm <math display="block">\left\|T_s\right\|_\text{op} = \left\|s_{\bull}\right\|_\infty.</math> This discussion extends directly to the case where <math>\ell^2</math> is replaced by a general <math>L^p</math> space with <math>p > 1</math> and <math>\ell^\infty</math> replaced by <math>L^\infty.</math> ==Equivalent definitions== Let <math>A : V \to W</math> be a linear operator between normed spaces. The first four definitions are always equivalent, and if in addition <math>V \neq \{0\}</math> then they are all equivalent: :<math> \begin{alignat}{4} \|A\|_\text{op} &= \inf &&\{ c \geq 0 ~&&:~ \| A v \| \leq c \| v \| ~&&~ \text{ for all } ~&&v \in V \} \\ &= \sup &&\{ \| Av \| ~&&:~ \| v \| \leq 1 ~&&~\mbox{ and } ~&&v \in V \} \\ &= \sup &&\{ \| Av \| ~&&:~ \| v \| < 1 ~&&~\mbox{ and } ~&&v \in V \} \\ &= \sup &&\{ \| Av \| ~&&:~ \| v \| \in \{0,1\} ~&&~\mbox{ and } ~&&v \in V \} \\ &= \sup &&\{ \| Av \| ~&&:~ \| v \| = 1 ~&&~\mbox{ and } ~&&v \in V \} \;\;\;\text{ this equality holds if and only if } V \neq \{ 0 \} \\ &= \sup &&\bigg\{ \frac{\| Av \|}{\| v \|} ~&&:~ v \ne 0 ~&&~\mbox{ and } ~&&v \in V \bigg\} \;\;\;\text{ this equality holds if and only if } V \neq \{ 0 \}. \\ \end{alignat} </math> If <math>V = \{0\}</math> then the sets in the last two rows will be empty, and consequently their [[supremum]]s over the set <math>[-\infty, \infty]</math> will equal <math>-\infty</math> instead of the correct value of <math>0.</math> If the supremum is taken over the set <math>[0, \infty]</math> instead, then the supremum of the empty set is <math>0</math> and the formulas hold for any <math>V.</math> Importantly, a linear operator <math>A : V \to W</math> is not, in general, guaranteed to achieve its norm <math>\|A\|_\text{op} = \sup \{\|A v\| : \|v\| \leq 1, v \in V\}</math> on the closed unit ball <math>\{v \in V : \|v\| \leq 1\},</math> meaning that there might not exist any vector <math>u \in V</math> of norm <math>\|u\| \leq 1</math> such that <math>\|A\|_\text{op} = \|A u\|</math> (if such a vector does exist and if <math>A \neq 0,</math> then <math>u</math> would necessarily have unit norm <math>\|u\| = 1</math>). R.C. James proved [[James's theorem]] in 1964, which states that a [[Banach space]] <math>V</math> is [[reflexive space|reflexive]] if and only if every [[bounded linear functional]] <math>f \in V^*</math> achieves its [[Dual norm|norm]] on the closed unit ball.{{sfn|Diestel|1984|p=6}} It follows, in particular, that every non-reflexive Banach space has some bounded linear functional (a type of bounded linear operator) that does not achieve its norm on the closed unit ball. If <math>A : V \to W</math> is bounded then{{sfn|Rudin|1991|pp=92-115}} <math display="block">\|A\|_\text{op} = \sup \left\{\left|w^*(A v)\right| : \|v\| \leq 1, \left\|w^*\right\| \leq 1 \text{ where } v \in V, w^* \in W^*\right\}</math> and{{sfn|Rudin|1991|pp=92-115}} <math display="block">\|A\|_\text{op} = \left\|{}^tA\right\|_\text{op}</math> where <math>{}^t A : W^* \to V^*</math> is the [[Transpose of a linear map|transpose]] of <math>A : V \to W,</math> which is the linear operator defined by <math>w^* \,\mapsto\, w^* \circ A.</math> == Properties == The operator norm is indeed a norm on the space of all [[bounded operator]]s between <math>V</math> and <math>W</math>. This means <math display="block">\|A\|_\text{op} \geq 0 \mbox{ and } \|A\|_\text{op} = 0 \mbox{ if and only if } A = 0,</math> <math display="block">\|aA\|_\text{op} = |a| \|A\|_\text{op} \mbox{ for every scalar } a ,</math> <math display="block">\|A + B\|_\text{op} \leq \|A\|_\text{op} + \|B\|_\text{op}.</math> The following inequality is an immediate consequence of the definition: <math display="block">\|Av\| \leq \|A\|_\text{op} \|v\| \ \mbox{ for every }\ v \in V.</math> The operator norm is also compatible with the composition, or multiplication, of operators: if <math>V</math>, <math>W</math> and <math>X</math> are three normed spaces over the same base field, and <math>A : V \to W</math> and <math>B : W \to X</math> are two bounded operators, then it is a [[sub-multiplicative norm]], that is: <math display="block">\|BA\|_\text{op} \leq \|B\|_\text{op} \|A\|_\text{op}.</math> For bounded operators on <math>V</math>, this implies that operator multiplication is jointly continuous. It follows from the definition that if a sequence of operators converges in operator norm, it [[converges uniformly]] on bounded sets. == Table of common operator norms == By choosing different norms for the codomain, used in computing <math>\|Av\|</math>, and the domain, used in computing <math>\|v\|</math>, we obtain different values for the operator norm. Some common operator norms are easy to calculate, and others are [[NP-hard]]. Except for the NP-hard norms, all these norms can be calculated in <math>N^2</math> operations (for an <math>N \times N</math> matrix), with the exception of the <math>\ell_2 - \ell_2</math> norm (which requires <math>N^3</math> operations for the exact answer, or fewer if you approximate it with the [[Power iteration|power method]] or [[Lanczos algorithm|Lanczos iterations]]). {| class="wikitable" style="text-align: center; width: 500px; height: 200px;" |+ Computability of Operator Norms<ref>section 4.3.1, [[Joel Tropp]]'s PhD thesis, [http://users.cms.caltech.edu/~jtropp/papers/Tro04-Topics-Sparse.pdf]</ref> |- ! scope="col" colspan = "2" rowspan = "2" | ! scope="col" colspan = "3" | Co-domain |- ! scope="col" | <math>\ell_1</math> ! scope="col" | <math>\ell_2</math> ! scope="col" | <math>\ell_\infty</math> |- ! scope = "row" rowspan="3" | Domain ! scope="row" | <math>\ell_1</math> | Maximum <math>\ell_1</math> norm of a column || Maximum <math>\ell_2</math> norm of a column || Maximum <math>\ell_{\infty}</math> norm of a column |- ! scope="row" | <math>\ell_2</math> | NP-hard || Maximum singular value || Maximum <math>\ell_2</math> norm of a row |- ! scope="row" | <math>\ell_\infty</math> | NP-hard || NP-hard || Maximum <math>\ell_1</math> norm of a row |} The norm of the [[Conjugate transpose|adjoint]] or transpose can be computed as follows. We have that for any <math>p, q,</math> then <math>\|A\|_{p\rightarrow q} = \|A^*\|_{q'\rightarrow p'}</math> where <math>p', q'</math> are [[Hölder's inequality|Hölder conjugate]] to <math>p, q,</math> that is, <math>1/p + 1/p' = 1</math> and <math>1/q + 1/q' = 1.</math> == Operators on a Hilbert space == Suppose <math>H</math> is a real or complex [[Hilbert space]]. If <math>A : H \to H</math> is a bounded linear operator, then we have <math display="block">\|A\|_\text{op} = \left\|A^*\right\|_\text{op}</math> and <math display="block">\left\|A^* A\right\|_\text{op} = \|A\|_\text{op}^2,</math> where <math>A^{*}</math> denotes the [[adjoint operator]] of <math>A</math> (which in [[Euclidean space]]s with the standard [[inner product]] corresponds to the [[conjugate transpose]] of the matrix <math>A</math>). In general, the [[spectral radius]] of <math>A</math> is bounded above by the operator norm of <math>A</math>: <math display="block">\rho(A) \leq \|A\|_\text{op}.</math> To see why equality may not always hold, consider the [[Jordan canonical form]] of a matrix in the finite-dimensional case. Because there are non-zero entries on the superdiagonal, equality may be violated. The [[quasinilpotent operator]]s is one class of such examples. A nonzero quasinilpotent operator <math>A</math> has spectrum <math>\{0\}.</math> So <math>\rho(A) = 0</math> while <math>\|A\|_\text{op} > 0.</math> However, when a matrix <math>N</math> is [[Normal matrix|normal]], its [[Jordan canonical form]] is diagonal (up to unitary equivalence); this is the [[spectral theorem]]. In that case it is easy to see that <math display="block">\rho(N) = \|N\|_\text{op}.</math> This formula can sometimes be used to compute the operator norm of a given bounded operator <math>A</math>: define the [[Hermitian operator]] <math>B = A^{*} A,</math> determine its spectral radius, and take the [[square root of a matrix|square root]] to obtain the operator norm of <math>A.</math> The space of bounded operators on <math>H,</math> with the [[Topological space|topology]] induced by operator norm, is not [[Separable space|separable]]. For example, consider the [[Lp space]] <math>L^2[0, 1],</math> which is a Hilbert space. For <math>0 < t \leq 1,</math> let <math>\Omega_t</math> be the [[Indicator function|characteristic function]] of <math>[0, t],</math> and <math>P_t</math> be the [[multiplication operator]] given by <math>\Omega_t,</math> that is, <math display="block">P_t (f) = f \cdot \Omega_t.</math> Then each <math>P_t</math> is a bounded operator with operator norm 1 and <math display="block">\left\|P_t - P_s\right\|_\text{op} = 1 \quad \mbox{ for all } \quad t \neq s.</math> But <math>\{P_t : 0 < t \leq 1\}</math> is an [[uncountable set]]. This implies the space of bounded operators on <math>L^2([0, 1])</math> is not separable, in operator norm. One can compare this with the fact that the sequence space <math>\ell^{\infty}</math> is not separable. The [[associative algebra]] of all bounded operators on a Hilbert space, together with the operator norm and the adjoint operation, yields a [[C*-algebra]]. ==See also== * {{annotated link|Banach–Mazur compactum}} * {{annotated link|Continuous linear operator}} * {{annotated link|Contraction (operator theory)}} * {{annotated link|Discontinuous linear map}} * {{annotated link|Dual norm}} * {{annotated link|Matrix norm}} * {{annotated link|Norm (mathematics)}} * {{annotated link|Normed space}} * {{annotated link|Operator algebra}} * {{annotated link|Operator theory}} * {{annotated link|Topologies on the set of operators on a Hilbert space}} * {{annotated link|Unbounded operator}} ==Notes== {{reflist}} ==References== * {{citation|last1=Aliprantis|first1=Charalambos D.|last2=Border|first2=Kim C.|title=Infinite Dimensional Analysis: A Hitchhiker's Guide|year=2007|publisher=Springer|isbn=9783540326960|page=229|url=https://books.google.com/books?id=4hIq6ExH7NoC&pg=PA229}}. * {{Citation|last=Conway|first=John B.|authorlink=John B. Conway|year=1990|contribution=III.2 Linear Operators on Normed Spaces|title=A Course in Functional Analysis|pages=67–69|isbn=0-387-97245-5|publisher=Springer-Verlag|location=New York|url=https://books.google.com/books?id=ix4P1e6AkeIC&pg=PA67}} * {{cite book|last=Diestel|first=Joe|title=Sequences and series in Banach spaces|publisher=Springer-Verlag|publication-place=New York|date=1984|isbn=0-387-90859-5|oclc=9556781}} <!--{{sfn|Diestel|1984|p=}}--> * {{Rudin Walter Functional Analysis|edition=2}} <!--{{sfn|Rudin|1991|p=}}--> {{Banach spaces}} {{Hilbert space}} {{Functional analysis}} {{Duality and spaces of linear maps}} [[Category:Functional analysis]] [[Category:Norms (mathematics)]] [[Category:Operator theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Banach spaces
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Duality and spaces of linear maps
(
edit
)
Template:Em
(
edit
)
Template:Functional analysis
(
edit
)
Template:Harvtxt
(
edit
)
Template:Hilbert space
(
edit
)
Template:Reflist
(
edit
)
Template:Rudin Walter Functional Analysis
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)