Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Order (ring theory)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Redirect|Maximal order|the maximal order of an arithmetic function|Extremal orders of an arithmetic function}} In [[mathematics]], an '''order''' in the sense of [[ring theory]] is a [[subring]] <math>\mathcal{O}</math> of a [[ring (mathematics)|ring]] <math>A</math>, such that #''<math>A</math>'' is a finite-dimensional [[Algebra over a field|algebra]] over the [[Field (mathematics)|field]] <math>\mathbb{Q}</math> of [[rational number]]s #<math>\mathcal{O}</math> spans ''<math>A</math>'' over <math>\mathbb{Q}</math>, and #<math>\mathcal{O}</math> is a <math>\mathbb{Z}</math>-[[lattice (module)|lattice]] in ''<math>A</math>''. The last two conditions can be stated in less formal terms: Additively, <math>\mathcal{O}</math> is a [[free abelian group]] generated by a [[basis (linear algebra)|basis]] for ''<math>A</math>'' over <math>\mathbb{Q}</math>. More generally for ''<math>R</math>'' an [[integral domain]] with fraction field ''<math>K</math>'', an ''<math>R</math>''-order in a finite-dimensional ''<math>K</math>''-algebra ''<math>A</math>'' is a subring <math>\mathcal{O}</math> of ''<math>A</math>'' which is a full ''<math>R</math>''-lattice; i.e. is a finite ''<math>R</math>''-module with the property that ''<math>\mathcal{O}\otimes_RK=A</math>''.<ref>Reiner (2003) p. 108</ref> When ''<math>A</math>'' is not a [[commutative ring]], the idea of order is still important, but the phenomena are different. For example, the [[Hurwitz quaternion]]s form a '''maximal''' order in the [[quaternion]]s with rational co-ordinates; they are not the quaternions with [[integer]] coordinates in the most obvious sense. Maximal orders exist in general, but need not be unique: there is in general no largest order, but a number of maximal orders. An important class of examples is that of integral [[group ring]]s. ==Examples== Some examples of orders are:<ref>Reiner (2003) pp. 108β109</ref> * If <math>A</math> is the [[matrix ring]] <math>M_n(K)</math> over <math>K</math>, then the matrix ring <math>M_n(R)</math> over <math>R</math> is an <math>R</math>-order in <math>A</math> * If <math>R</math> is an integral domain and <math>L</math> a finite [[separable extension]] of <math>K</math>, then the [[integral closure]] <math>S</math> of <math>R</math> in <math>L</math> is an <math>R</math>-order in <math>L</math>. * If <math>a</math> in <math>A</math> is an [[integral element]] over <math>R</math>, then the [[polynomial ring]] <math>R[a]</math> is an <math>R</math>-order in the algebra <math>K[a]</math> * If <math>A</math> is the [[group ring]] <math>K[G]</math> of a [[finite group]] <math>G</math>, then <math>R[G]</math> is an <math>R</math>-order on <math>K[G]</math> A fundamental property of <math>R</math>-orders is that every element of an <math>R</math>-order is [[integral element|integral]] over <math>R</math>.<ref name=R110>Reiner (2003) p. 110</ref> If the integral closure <math>S</math> of <math>R</math> in <math>A</math> is an <math>R</math>-order then the integrality of every element of every <math>R</math>-order shows that <math>S</math> must be the unique maximal <math>R</math>-order in <math>A</math>. However <math>S</math> need not always be an <math>R</math>-order: indeed <math>S</math> need not even be a ring, and even if <math>S</math> is a ring (for example, when <math>A</math> is commutative) then <math>S</math> need not be an <math>R</math>-lattice.<ref name=R110/> ==Algebraic number theory== The leading example is the case where ''<math>A</math>'' is a [[number field]] ''<math>K</math>'' and <math>\mathcal{O}</math> is its [[ring of integers]]. In [[algebraic number theory]] there are examples for any ''<math>K</math>'' other than the rational field of proper subrings of the ring of integers that are also orders. For example, in the [[field extension]] ''<math>A=\mathbb{Q}(i)</math>'' of [[Gaussian rational]]s over <math>\mathbb{Q}</math>, the integral closure of ''<math>\mathbb{Z}</math>'' is the ring of [[Gaussian integer]]s ''<math>\mathbb{Z}[i]</math>'' and so this is the unique ''maximal'' ''<math>\mathbb{Z}</math>''-order: all other orders in ''<math>A</math>'' are contained in it. For example, we can take the subring of [[complex number]]s of the form <math>a+2bi</math>, with <math>a</math> and <math>b</math> integers.<ref>Pohst and Zassenhaus (1989) p. 22</ref> The maximal order question can be examined at a [[local field]] level. This technique is applied in algebraic number theory and [[modular representation theory]]. == See also == * [[Hurwitz quaternion order]] β An example of ring order ==Notes== {{reflist}} ==References== * {{cite book | last1=Pohst | first1=M. | last2=Zassenhaus | first2=H. | author2-link=Hans Zassenhaus | title=Algorithmic Algebraic Number Theory | series=Encyclopedia of Mathematics and its Applications | volume=30 | publisher=[[Cambridge University Press]] | year=1989 | isbn=0-521-33060-2 | zbl=0685.12001 }} * {{cite book | last=Reiner | first=I. | authorlink=Irving Reiner | title=Maximal Orders | series=London Mathematical Society Monographs. New Series | volume=28 | publisher=[[Oxford University Press]] | year=2003 | isbn=0-19-852673-3 | zbl=1024.16008 }} [[Category:Ring theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Redirect
(
edit
)
Template:Reflist
(
edit
)