Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ordered exponential
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Generalisation of the exponential integral to non-commutative algebras}} {{More citations needed|date=April 2018}} The '''ordered exponential''', also called the '''path-ordered exponential''', is a [[mathematics|mathematical]] operation defined in [[non-commutative]] [[algebra over a field|algebras]], equivalent to the [[exponential function|exponential]] of the [[integral]] in the [[commutative]] algebras. In practice the ordered exponential is used in [[matrix (mathematics)|matrix]] and [[operator (mathematics)|operator]] algebras. It is a kind of [[product integral]], or Volterra integral. == Definition == Let {{math|''A''}} be an [[algebra over a field|algebra]] over a [[field (mathematics)|field]] {{math|''K''}}, and {{math|''a''(''t'')}} be an element of {{math|''A''}} [[function (mathematics)|parameterized]] by the real numbers, :<math>a : \R \to A. </math> The parameter {{mvar|t}} in {{math|''a''(''t'')}} is often referred to as the ''time parameter'' in this context. The ordered exponential of {{math|''a''}} is denoted :<math>\begin{align} \operatorname{OE}[a](t) \equiv \mathcal{T} \left\{e^{\int_0^t a(t') \, dt'}\right\} & \equiv \sum_{n = 0}^\infty \frac{1}{n!} \int_0^t dt'_1 \cdots \int_0^t dt'_n \; \mathcal{T} \left\{a(t'_1) \cdots a(t'_n)\right\} \\ & = \sum_{n = 0}^\infty \int_0^t dt'_1 \int_0^{t'_1} dt'_2 \int_0^{t'_2}dt'_3 \cdots \int_0^{t'_{n-1}} dt'_n \; a(t'_n) \cdots a(t'_1) \end{align}</math> where the term {{math|1=''n'' = 0}} is equal to 1 and where <math>\mathcal{T}</math> is the [[Path-ordering#Time ordering|time-ordering operator]]. It is a higher-order operation that ensures the exponential is time-ordered, so that any product of {{math|''a''(''t'')}} that occurs in the expansion of the exponential is ordered such that the value of {{mvar|t}} is increasing from right to left of the product. For example: :<math>\mathcal{T} \left\{a(1.2) a(9.5) a(4.1)\right\} = a(9.5) a(4.1) a(1.2).</math> Time ordering is required, as products in the algebra are not necessarily commutative. The operation maps a parameterized element onto another parameterized element, or symbolically, :<math>\operatorname{OE} \mathrel{:} (\R \to A) \to (\R \to A). </math> There are various ways to define this integral more rigorously. === Product of exponentials === The ordered exponential can be defined as the left [[product integral]] of the [[infinitesimal]] exponentials, or equivalently, as an [[ordered product]] of exponentials in the [[Limit (mathematics)|limit]] as the number of terms grows to infinity: :<math>\operatorname{OE}[a](t) = \prod_0^t e^{a(t') \, dt'} \equiv \lim_{N \to \infty} \left( e^{a(t_N) \, \Delta t} e^{a(t_{N-1}) \, \Delta t} \cdots e^{a(t_1) \, \Delta t} e^{a(t_0) \, \Delta t} \right) </math> where the time moments {{math|{{mset|''t''<sub>0</sub>, ..., ''t''<sub>''N''</sub>}}}} are defined as {{math|''t''<sub>''i''</sub> ≡ ''i'' Δ''t''}} for {{math|1=''i'' = 0, ..., ''N''}}, and {{math|Δ''t'' ≡ ''t'' / ''N''}}. The ordered exponential is in fact a [[Product integral#Type II|geometric integral]]{{Broken anchor|date=2024-05-27|bot=User:Cewbot/log/20201008/configuration|target_link=Product integral#Type II|reason= The anchor (Type II) [[Special:Diff/835454693|has been deleted]].}}.<ref name=nnc>Michael Grossman and Robert Katz. [https://books.google.com/books?q=%22Non-Newtonian+Calculus%22&btnG=Search+Books&as_brr=0 ''Non-Newtonian Calculus''], {{ISBN|0912938013}}, 1972.</ref><ref>A. E. Bashirov, E. M. Kurpınar, A. Özyapıcı. [http://linkinghub.elsevier.com/retrieve/pii/S0022247X07003824 ''Multiplicative calculus and its applications''], Journal of Mathematical Analysis and Applications, 2008.</ref><ref name=FvA>Luc Florack and Hans van Assen.[https://doi.org/10.1007%2Fs10851-011-0275-1 "Multiplicative calculus in biomedical image analysis"], Journal of Mathematical Imaging and Vision, 2011. </ref> === Solution to a differential equation === The ordered exponential is unique solution of the [[initial value problem]]: :<math>\begin{align} \frac{d}{d t} \operatorname{OE}[a](t) &= a(t) \operatorname{OE}[a](t), \\[5pt] \operatorname{OE}[a](0) &= 1. \end{align}</math> === Solution to an integral equation === The ordered exponential is the solution to the [[integral equation]]: :<math>\operatorname{OE}[a](t) = 1 + \int_0^t a(t') \operatorname{OE}[a](t') \, dt'. </math> This equation is equivalent to the previous initial value problem. === Infinite series expansion === The ordered exponential can be defined as an infinite sum, :<math>\operatorname{OE}[a](t) = 1 + \int_0^t a(t_1) \, dt_1+ \int_0^t dt_1 \int_0^{t_1} dt_2 \; a(t_1) a(t_2) + \cdots.</math> This can be derived by recursively substituting the integral equation into itself. == Example == Given a manifold <math>M</math> where for a <math>e \in TM</math> with [[Group theory|group]] transformation <math>g: e \mapsto g e</math> it holds at a point <math>x \in M</math>: : <math>de(x) + \operatorname{J}(x)e(x) = 0.</math> Here, <math>d</math> denotes [[exterior differentiation]] and <math>\operatorname{J}(x)</math> is the connection operator (1-form field) acting on <math>e(x)</math>. When integrating above equation it holds (now, <math>\operatorname{J}(x)</math> is the connection operator expressed in a coordinate basis) : <math>e(y) = \operatorname{P} \exp \left(- \int_x^y J(\gamma (t)) \gamma '(t) \, dt \right) e(x)</math> with the path-ordering operator <math>\operatorname{P}</math> that orders factors in order of the path <math>\gamma(t) \in M</math>. For the special case that <math>\operatorname{J}(x)</math> is an [[Antisymmetry|antisymmetric]] operator and <math>\gamma</math> is an infinitesimal rectangle with edge lengths <math>|u|,|v|</math> and corners at points <math>x,x+u,x+u+v,x+v,</math> above expression simplifies as follows : : <math> \begin{align} & \operatorname{OE}[- \operatorname{J}]e(x) \\[5pt] = {} & \exp [- \operatorname{J}(x+v) (-v)] \exp [- \operatorname{J}(x+u+v) (-u)] \exp [- \operatorname{J}(x+u) v] \exp [- \operatorname{J}(x) u] e(x) \\[5pt] = {} & [1 - \operatorname{J}(x+v) (-v)][1 - \operatorname{J}(x+u+v) (-u)][1 - \operatorname{J}(x+u) v][1 - \operatorname{J}(x) u] e(x). \end{align} </math> Hence, it holds the group transformation identity <math>\operatorname{OE}[- \operatorname{J}] \mapsto g \operatorname{OE}[\operatorname{J}] g^{-1}</math>. If <math>- \operatorname{J}(x)</math> is a smooth connection, expanding above quantity to second order in infinitesimal quantities <math>|u|,|v|</math> one obtains for the ordered exponential the identity with a correction term that is proportional to the [[Riemann curvature tensor| curvature tensor]]. ==See also== * [[Path-ordering]] (essentially the same concept) * [[Magnus expansion]] * [[Product integral]] * [[Haar measure]] * [[List of derivatives and integrals in alternative calculi]] * [[Indefinite product]] *[[Fractal derivative]] ==References== <references /> ==External links== * [https://sites.google.com/site/nonnewtoniancalculus/ Non-Newtonian calculus website] [[Category:Abstract algebra]] [[Category:Ordinary differential equations]] [[Category:Non-Newtonian calculus]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Broken anchor
(
edit
)
Template:ISBN
(
edit
)
Template:Math
(
edit
)
Template:More citations needed
(
edit
)
Template:Mvar
(
edit
)
Template:Short description
(
edit
)