Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Orthogonal functions
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Type of function}} In [[mathematics]], '''orthogonal functions''' belong to a [[function space]] that is a [[vector space]] equipped with a [[bilinear form]]. When the function space has an [[interval (mathematics)|interval]] as the [[domain of a function|domain]], the bilinear form may be the [[integral]] of the product of functions over the interval: :<math> \langle f,g\rangle = \int \overline{f(x)}g(x)\,dx .</math> The functions <math>f</math> and <math>g</math> are [[Orthogonality_(mathematics)|orthogonal]] when this integral is zero, i.e. <math>\langle f, \, g \rangle = 0</math> whenever <math>f \neq g</math>. As with a [[basis (linear algebra)|basis]] of vectors in a finite-dimensional space, orthogonal functions can form an infinite basis for a function space. Conceptually, the above integral is the equivalent of a vector [[dot product]]; two vectors are mutually independent (orthogonal) if their dot-product is zero. Suppose <math> \{ f_0, f_1, \ldots\}</math> is a sequence of orthogonal functions of nonzero [[L2-norm|''L''<sup>2</sup>-norm]]s <math display="inline"> \left\| f_n \right\| _2 = \sqrt{\langle f_n, f_n \rangle} = \left(\int f_n ^2 \ dx \right) ^\frac{1}{2} </math>. It follows that the sequence <math>\left\{ f_n / \left\| f_n \right\| _2 \right\}</math> is of functions of ''L''<sup>2</sup>-norm one, forming an [[orthonormal sequence]]. To have a defined ''L''<sup>2</sup>-norm, the integral must be bounded, which restricts the functions to being [[square-integrable function|square-integrable]]. ==Trigonometric functions== {{Main article|Fourier series|Harmonic analysis}} Several sets of orthogonal functions have become standard bases for approximating functions. For example, the sine functions {{nowrap|sin ''nx''}} and {{nowrap|sin ''mx''}} are orthogonal on the interval <math>x \in (-\pi, \pi)</math> when <math>m \neq n</math> and ''n'' and ''m'' are positive integers. For then :<math>2 \sin \left(mx\right) \sin \left(nx\right) = \cos \left(\left(m - n\right)x\right) - \cos\left(\left(m+n\right) x\right), </math> and the integral of the product of the two sine functions vanishes.<ref>[[Antoni Zygmund]] (1935) ''[[Trigonometric Series|Trigonometrical Series]]'', page 6, Mathematical Seminar, University of Warsaw</ref> Together with cosine functions, these orthogonal functions may be assembled into a [[trigonometric polynomial]] to approximate a given function on the interval with its [[Fourier series]]. ==Polynomials== {{main article|Orthogonal polynomials}} If one begins with the [[monomial]] sequence <math> \left\{1, x, x^2, \dots\right\} </math> on the interval <math>[-1,1]</math> and applies the [[Gram–Schmidt process]], then one obtains the [[Legendre polynomial]]s. Another collection of orthogonal polynomials are the [[associated Legendre polynomials]]. The study of orthogonal polynomials involves [[weight function]]s <math>w(x)</math> that are inserted in the bilinear form: :<math> \langle f,g\rangle = \int w(x) f(x) g(x)\,dx .</math> For [[Laguerre polynomial]]s on <math>(0,\infty)</math> the weight function is <math>w(x) = e^{-x}</math>. Both physicists and probability theorists use [[Hermite polynomial]]s on <math>(-\infty,\infty)</math>, where the weight function is <math>w(x) = e^{-x^2}</math> or <math>w(x) = e^{- x^2/2}</math>. [[Chebyshev polynomial]]s are defined on <math>[-1,1]</math> and use weights <math display="inline">w(x) = \frac{1}{\sqrt{1 - x^2}}</math> or <math display="inline">w(x) = \sqrt{1 - x^2}</math>. [[Zernike polynomial]]s are defined on the [[unit disk]] and have orthogonality of both radial and angular parts. ==Binary-valued functions== [[Walsh function]]s and [[Haar wavelet]]s are examples of orthogonal functions with discrete ranges. ==Rational functions== [[File:ChebychevRational1.png|thumb|Plot of the Chebyshev rational functions of order n=0,1,2,3 and 4 between x=0.01 and 100.]] Legendre and Chebyshev polynomials provide orthogonal families for the interval {{nowrap|[−1, 1]}} while occasionally orthogonal families are required on {{nowrap|[0, ∞)}}. In this case it is convenient to apply the [[Cayley transform#Real homography|Cayley transform]] first, to bring the argument into {{nowrap|[−1, 1]}}. This procedure results in families of [[rational function|rational]] orthogonal functions called [[Legendre rational functions]] and [[Chebyshev rational functions]]. ==In differential equations== Solutions of linear [[differential equation]]s with boundary conditions can often be written as a weighted sum of orthogonal solution functions (a.k.a. [[eigenfunction]]s), leading to [[generalized Fourier series]]. ==See also== * [[Eigenvalues and eigenvectors]] * [[Hilbert space]] * [[Karhunen–Loève theorem]] * [[Lauricella's theorem]] * [[Wannier function]] ==References== {{reflist}} * George B. Arfken & Hans J. Weber (2005) ''Mathematical Methods for Physicists'', 6th edition, chapter 10: Sturm-Liouville Theory — Orthogonal Functions, [[Academic Press]]. * {{cite journal|author=Price, Justin J.|authorlink=Justin Jesse Price|title=Topics in orthogonal functions|journal=[[American Mathematical Monthly]]|volume=82|year=1975|pages=594–609|url=http://www.maa.org/programs/maa-awards/writing-awards/topics-in-orthogonal-functions|doi=10.2307/2319690}} * [[Giovanni Sansone]] (translated by Ainsley H. Diamond) (1959) ''Orthogonal Functions'', [[Interscience Publishers]]. == External links == * [http://mathworld.wolfram.com/OrthogonalFunctions.html Orthogonal Functions], on MathWorld. [[Category:Functional analysis]] [[Category:Types of functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite journal
(
edit
)
Template:Main article
(
edit
)
Template:Nowrap
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)