Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Output impedance
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Measure of the opposition to current flow by an internal electrical load}} {{More footnotes needed|date=April 2023}} In [[electrical engineering]], the '''output impedance''' of an [[electrical network]] is the measure of the opposition to [[Electric current|current]] flow ([[Electrical impedance|impedance]]), both static ([[Electrical resistance and conductance|resistance]]) and dynamic ([[Electrical reactance|reactance]]), into the [[Electrical load|load network]] being connected that is ''internal'' to the [[Current source|electrical source]]. The output impedance is a measure of the source's propensity to [[Voltage drop|drop in voltage]] when the load draws current, the source network being the portion of the network that transmits and the load network being the portion of the network that consumes. Because of this the output impedance is sometimes referred to as the '''source impedance''' or '''internal impedance'''. [[File:Source and load circuit Z (2).svg|thumb|Circuit to the left of central set of open circles models the source circuit, while circuit to the right models the connected circuit. {{math|''Z''<sub>S</sub>}} is output impedance as seen by the load, and {{math|''Z''<sub>L</sub>}} is input impedance as seen by the source.]] == Description == All devices and connections have non-zero resistance and reactance, and therefore no device can be a perfect source. The output impedance is often used to model the source's response to current flow. Some portion of the device's measured output impedance may not physically exist within the device; some are artifacts that are due to the chemical, thermodynamic, or mechanical properties of the source. This impedance can be imagined as an impedance in series with an ideal [[voltage source]], or in parallel with an ideal [[current source]] (''see'': [[Series and parallel circuits]]). Sources are modeled as ideal sources (ideal meaning sources that always keep the desired value) combined with their output impedance. The output impedance is defined as this modeled and/or real impedance in series with an ideal voltage source. Mathematically, current and voltage sources can be converted to each other using [[Thévenin's theorem]] and [[Norton's theorem]]. In the case of a [[nonlinear device]], such as a [[transistor]], the term "output impedance" usually refers to the effect upon a small-amplitude signal, and will vary with the [[bias point]] of the transistor, that is, with the direct current (DC) and voltage applied to the device. == Measurement == The source resistance of a purely resistive device can be experimentally determined by increasingly loading the device until the voltage across the load (AC or DC) is one half of the open circuit voltage. At this point, the load resistance and [[internal resistance]] are equal. It can more accurately be described by keeping track of the voltage vs current curves for various loads, and calculating the resistance from [[Ohm's law]]. (The internal resistance may not be the same for different types of loading or at different frequencies, especially in devices like chemical batteries.) The generalized source impedance for a reactive (inductive or capacitive) source device is more complicated to determine, and is usually measured with specialized instruments, rather than taking many measurements by hand. == Audio amplifiers == [[File:Source and load circuit Z.png]] The real output impedance (Z<sub>S</sub>) of a [[power amplifier]] is usually less than 0.1 Ω, but this is rarely specified. Instead it is "hidden" within the [[damping factor]] parameter, which is: : <math> DF = \frac{Z_\mathrm{L}}{Z_\mathrm{S}} </math> Solving for ''Z''<sub>S</sub>, : <math> Z_\mathrm{S} = \frac{Z_\mathrm{L}}{DF} </math> gives the small source impedance (output impedance) of the power amplifier. This can be calculated from the ''Z''<sub>L</sub> of the loudspeaker (typically 2, 4, or 8 ohms) and the given value of the damping factor. Generally in audio and [[hifi]], the input impedance of components is several times (technically, more than 10) the output impedance of the device connected to them. This is called [[impedance bridging]] or voltage bridging. In this case, ''Z''<sub>L</sub>>> ''Z''<sub>S</sub>, (in practice:) ''DF'' > 10 In video, RF, and other systems, impedances of inputs and outputs are the same. This is called [[impedance matching]] or a matched connection. In this case, ''Z''<sub>S</sub> = ''Z''<sub>L</sub>, ''DF'' = 1/1 = 1 . The actual output impedance for most devices is not the same as the rated output impedance. A power amplifier may have a rated impedance of 8 ohms, but the actual output impedance will vary depending on circuit conditions. The rated output impedance is the impedance into which the amplifier can deliver its maximum amount of power without failing. == Batteries == [[Internal resistance]] is a concept that helps model the electrical consequences of the complex chemical reactions inside a [[Battery (electricity)|battery]]. It is impossible to directly measure the internal resistance of a battery, but it can be calculated from current and voltage data measured from a circuit. When a load is applied to a battery, the internal resistance can be calculated from the following equations: : <math>\begin{align} R_B &= \left( \frac{Vs}{I} \right) - R_L \\ &= \frac{V_S - V_L}{I} \end{align}</math> where : <math>R_B</math> is the internal resistance of the battery : <math>V_S</math> is the battery voltage without a load : <math>V_L</math> is the battery voltage with a load : <math>R_L</math> is the total resistance of the circuit : <math>I</math> is the total current supplied by the battery Internal resistance varies with the age of a battery, but for most commercial batteries the internal resistance is on the order of 1 ohm. When there is a current through a cell, the measured [[Electromotive force|e.m.f.]] is lower than when there is no current delivered by the cell. The reason for this is that part of the available energy of the cell is used up to drive charges through the cell. This energy is wasted by the so-called "internal resistance" of that cell. This wasted energy shows up as lost voltage. Internal resistance is <math>r=\frac{E - V_L}{I}</math>. == See also == * [[Electrical impedance]] * [[Input impedance]] * [[Nominal impedance]] * [[Damping factor]] * [[Voltage divider]] * [[Early effect#Small-signal model | Early effect small-signal model]] * [[Equivalent series resistance]] * [[Power gain]] ==References== * {{cite book |last=Tocci |first=Ronald J. |author-link=Ronald J. Tocci |title=Fundamentals of Electronic Devices |url=https://books.google.com/books?id=dpFYAAAAYAAJ |access-date=27 October 2011 |edition=2nd |date=1975 |publisher=Merrill |isbn=978-0-675-08771-1 |pages=243–246 |chapter=11 }} ==External links== * [http://www.sengpielaudio.com/calculator-bridging.htm Calculation of the Damping Factor and the Damping of Impedance Bridging] [[Category:Audio amplifier specifications]] [[Category:Electrical parameters]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Math
(
edit
)
Template:More footnotes needed
(
edit
)
Template:Short description
(
edit
)