Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Paley–Wiener theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical theorem}} In [[mathematics]], a '''Paley–Wiener theorem''' is a theorem that relates decay properties of a function or [[distribution (mathematics)|distribution]] at infinity with [[analytic function|analyticity]] of its [[Fourier transform]]. It is named after [[Raymond Paley]] (1907–1933) and [[Norbert Wiener]] (1894–1964) who, in 1934, introduced various versions of the theorem.{{sfn | Paley | Wiener | 1934}} The original theorems did not use the language of [[generalized function|distributions]], and instead applied to [[Lp space|square-integrable functions]]. The first such theorem using distributions was due to [[Laurent Schwartz]]. These theorems heavily rely on the [[triangle inequality]] (to interchange the absolute value and integration). The original work by Paley and Wiener is also used as a namesake in the fields of [[control theory]] and [[harmonic analysis]]; introducing the '''[[Jensen%27s_formula#Applications|Paley–Wiener condition]]''' for [[polynomial_matrix_spectral_factorization|spectral factorization]] and the '''[[Riesz_sequence#Paley-Wiener_criterion|Paley–Wiener criterion]]''' for [[Frame_(linear_algebra)#Non-harmonic_Fourier_series|non-harmonic Fourier series]] respectively.{{sfn | Paley | Wiener | 1934|pp=14-20,100}} These are related mathematical concepts that place the decay properties of a function in context of [[stability theory|stability problems]]. ==Holomorphic Fourier transforms== The classical Paley–Wiener theorems make use of the [[Holomorphic function|holomorphic]] Fourier transform on classes of [[square-integrable function]]s supported on the real line. Formally, the idea is to take the integral defining the (inverse) Fourier transform :<math>f(\zeta) = \int_{-\infty}^\infty F(x)e^{i x \zeta}\,dx</math> and allow <math>\zeta</math> to be a [[complex number]] in the [[upper half-plane]]. One may then expect to differentiate under the integral in order to verify that the [[Cauchy–Riemann equations]] hold, and thus that <math>f</math> defines an analytic function. However, this integral may not be well-defined, even for <math>F</math> in <math>L^2(\mathbb{R})</math>; indeed, since <math>\zeta</math> is in the upper half plane, the modulus of <math>e^{ix\zeta}</math> grows exponentially as <math>x \to -\infty</math>; so [[Leibniz integral rule|differentiation under the integral sign]] is out of the question. One must impose further restrictions on <math>F</math> in order to ensure that this integral is well-defined. The first such restriction is that <math>F</math> be supported on <math>\mathbb{R}_+</math>: that is, <math>F\in L^2(\mathbb{R}_+)</math>. The Paley–Wiener theorem now asserts the following:<ref>{{harvnb|Rudin|1987|loc=Theorem 19.2}}; {{harvnb|Strichartz|1994|loc=Theorem 7.2.4}}; {{harvnb|Yosida|1968|loc=§VI.4}}</ref> The holomorphic Fourier transform of <math>F</math>, defined by :<math>f(\zeta) = \int_0^\infty F(x) e^{i x\zeta}\, dx</math> for <math>\zeta</math> in the [[upper half-plane]] is a holomorphic function. Moreover, by [[Plancherel's theorem]], one has :<math>\int_{-\infty}^\infty \left |f(\xi+i\eta) \right|^2\, d\xi \le \int_0^\infty |F(x)|^2\, dx</math> and by [[dominated convergence]], :<math>\lim_{\eta\to 0^+}\int_{-\infty}^\infty \left|f(\xi+i\eta)-f(\xi) \right|^2\,d\xi = 0.</math> Conversely, if <math>f</math> is a holomorphic function in the upper half-plane satisfying :<math>\sup_{\eta>0} \int_{-\infty}^\infty \left |f(\xi+i\eta) \right|^2\,d\xi = C < \infty</math> then there exists <math>F\in L^2(\mathbb{R}_+)</math> such that <math>f</math> is the holomorphic Fourier transform of <math>F</math>. In abstract terms, this version of the theorem explicitly describes the [[Hardy space]] [[H square|<math>H^2(\mathbb{R})</math>]]. The theorem states that :<math> \mathcal{F}H^2(\mathbb{R})=L^2(\mathbb{R_+}).</math> This is a very useful result as it enables one to pass to the Fourier transform of a function in the Hardy space and perform calculations in the easily understood space <math>L^2(\mathbb{R}_+)</math> of square-integrable functions supported on the positive axis. By imposing the alternative restriction that <math>F</math> be [[compact support|compactly supported]], one obtains another Paley–Wiener theorem.<ref>{{harvnb|Rudin|1987|loc=Theorem 19.3}}; {{harvnb|Strichartz|1994|loc=Theorem 7.2.1}}</ref> Suppose that <math>F</math> is supported in <math>[-A,A]</math>, so that <math>F\in L^2(-A,A)</math>. Then the holomorphic Fourier transform :<math>f(\zeta) = \int_{-A}^A F(x)e^{i x\zeta}\,dx</math> is an [[entire function]] of [[exponential type]] <math>A</math>, meaning that there is a constant <math>C</math> such that :<math>|f(\zeta)|\le Ce^{A|\zeta|},</math> and moreover, <math>f</math> is square-integrable over horizontal lines: :<math>\int_{-\infty}^{\infty} |f(\xi+i\eta)|^2\,d\xi < \infty.</math> Conversely, any entire function of exponential type <math>A</math> which is square-integrable over horizontal lines is the holomorphic Fourier transform of an <math>L^2</math> function supported in <math>[-A,A]</math>. ==Schwartz's Paley–Wiener theorem== Schwartz's Paley–Wiener theorem asserts that the Fourier transform of a [[distribution (mathematics)|distribution]] of [[compact support]] on <math>\mathbb{R}^n</math> is an [[entire function]] on <math>\mathbb{C}^n</math> and gives estimates on its growth at infinity. It was proven by [[Laurent Schwartz]] ([[#CITEREFSchwartz1952|1952]]). The formulation presented here is from {{harvtxt|Hörmander|1976}}. Generally, the Fourier transform can be defined for any [[distribution (mathematics)#Tempered distributions and Fourier transform|tempered distribution]]; moreover, any distribution of compact support <math>v</math> is a tempered distribution. If <math>v</math> is a distribution of compact support and <math>f</math> is an infinitely differentiable function, the expression :<math> v(f) = v(x\mapsto f(x)) </math> is well defined. It can be shown that the Fourier transform of <math>v</math> is a function (as opposed to a general tempered distribution) given at the value <math>s</math> by :<math> \hat{v}(s) = (2 \pi)^{-\frac{n}{2}} v\left(x\mapsto e^{-i \langle x, s\rangle}\right)</math> and that this function can be extended to values of <math>s</math> in the complex space <math>\mathbb{C}^n</math>. This extension of the Fourier transform to the complex domain is called the [[Fourier–Laplace transform]]. {{math theorem|name=Schwartz's theorem| math_statement=An entire function <math>F</math> on <math>\mathbb{C}^n</math> is the Fourier–Laplace transform of a distribution <math>v</math> of compact support if and only if for all <math>z\in\mathbb{C}^n</math>, :<math> |F(z)| \leq C (1 + |z|)^N e^{B|\text{Im}(z)|} </math> for some constants <math>C</math>, <math>N</math>, <math>B</math>. The distribution <math>v</math> in fact will be supported in the closed ball of center <math>0</math> and radius <math>B</math>.}} Additional growth conditions on the entire function <math>F</math> impose regularity properties on the distribution <math>v</math>. For instance:<ref>{{harvnb|Strichartz|1994|loc=Theorem 7.2.2}}; {{harvnb|Hörmander|1990|loc=Theorem 7.3.1}}</ref> {{math theorem|math_statement= If for every positive <math>N</math> there is a constant <math>C_N</math> such that for all <math>z\in\mathbb{C}^n</math>, :<math> |F(z)| \leq C_N (1 + |z|)^{-N} e^{B|\mathrm{Im}(z)|} </math> then <math>v</math> is an infinitely differentiable function, and vice versa.}} Sharper results giving good control over the [[singular support]] of <math>v</math> have been formulated by {{harvtxt|Hörmander|1990}}. In particular,<ref>{{harvnb|Hörmander|1990|loc=Theorem 7.3.8}}</ref> let <math>K</math> be a convex [[Compact space|compact set]] in <math>\mathbb{R}^n</math> with supporting function <math>H</math>, defined by :<math>H(x) = \sup_{y\in K} \langle x,y\rangle.</math> Then the singular support of <math>v</math> is contained in <math>K</math> [[if and only if]] there is a constant <math>N</math> and sequence of constants <math>C_m</math> such that :<math>|\hat{v}(\zeta)| \le C_m(1+|\zeta|)^Ne^{H(\mathrm{Im}(\zeta))}</math> for <math>|\mathrm{Im}(\zeta)| \le m \log(| \zeta |+1).</math> ==Notes== {{Reflist}} ==References== *{{citation | first=L. | last=Hörmander | author-link=Lars Hörmander | title=Linear Partial Differential Operators, Volume 1 | publisher=Springer | year=1976 | isbn=978-3-540-00662-6 }} * {{citation|first=L.|last=Hörmander|authorlink=Lars Hörmander|title=The Analysis of Linear Partial Differential Operators I|publisher=Springer Verlag|year=1990}}. * {{cite book |authorlink1=Raymond Paley | authorlink2=Norbert Wiener| last=Paley | first=Raymond E. A. C. | last2=Wiener | first2=Norbert | title=Fourier Transforms in the Complex Domain | publisher=American Mathematical Soc. | publication-place=Providence, RI | date=1934 | isbn=978-0-8218-1019-4}} *{{Citation | last1=Rudin | first1=Walter | author1-link=Walter Rudin | title=Real and complex analysis | publisher=[[McGraw-Hill]] | location=New York | edition=3rd | isbn=978-0-07-054234-1 |mr=924157 | year=1987}}. * {{Citation | last1=Schwartz | first1=Laurent | authorlink=Laurent Schwartz | title=Transformation de Laplace des distributions |mr=0052555 | year=1952 | journal=Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] | volume=1952 | pages=196–206}} * {{citation|first=R.|last=Strichartz|year=1994|title=A Guide to Distribution Theory and Fourier Transforms|publisher=CRC Press|isbn=0-8493-8273-4}}. * {{citation|first=K.|last=Yosida|authorlink=Kōsaku Yosida|title=Functional Analysis|publisher=Academic Press|year=1968}}. {{DEFAULTSORT:Paley-Wiener theorem}} [[Category:Theorems in Fourier analysis]] [[Category:Generalized functions]] [[Category:Theorems in complex analysis]] [[Category:Hardy spaces]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Harvnb
(
edit
)
Template:Harvtxt
(
edit
)
Template:Math theorem
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)