Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Parseval's theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Theorem in mathematics}} In mathematics, '''Parseval's theorem''' usually refers to the result that the [[Fourier transform]] is [[Unitary operator|unitary]]; loosely, that the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform.<ref>Parseval des Chênes, Marc-Antoine Mémoire sur les séries et sur l'intégration complète d'une équation aux différences partielles linéaire du second ordre, à coefficients constants" presented before the Académie des Sciences (Paris) on 5 April 1799. This article was published in ''Mémoires présentés à l’Institut des Sciences, Lettres et Arts, par divers savants, et lus dans ses assemblées. Sciences, mathématiques et physiques. (Savants étrangers.)'', vol. 1, pages 638–648 (1806).</ref> It originates from a 1799 theorem about [[series (mathematics)|series]] by [[Marc-Antoine Parseval]], which was later applied to the [[Fourier series]]. It is also known as '''Rayleigh's energy theorem''', or '''Rayleigh's identity''', after [[John William Strutt]], Lord Rayleigh.<ref>Rayleigh, J.W.S. (1889) "On the character of the complete radiation at a given temperature," ''[[Philosophical Magazine]]'', vol. 27, pages 460–469. Available on-line [https://books.google.com/books?id=izM9AAAAIAAJ&pg=PA268 here].</ref> Although the term "Parseval's theorem" is often used to describe the unitarity of ''any'' Fourier transform, especially in [[physics]], the most general form of this property is more properly called the [[Plancherel theorem]].<ref>Plancherel, Michel (1910) "Contribution à l'etude de la representation d'une fonction arbitraire par les integrales définies," ''Rendiconti del Circolo Matematico di Palermo'', vol. 30, pages 298–335.</ref> == Statement of Parseval's theorem == Suppose that <math>A(x)</math> and <math>B(x)</math> are two complex-valued functions on <math>\mathbb{R}</math> of [[periodic function|period]] <math>2 \pi</math> that are [[square integrable]] (with respect to the [[Lebesgue measure]]) over intervals of period length, with [[Fourier series]] :<math>A(x)=\sum_{n=-\infty}^\infty a_ne^{inx}</math> and<br /> :<math>B(x)=\sum_{n=-\infty}^\infty b_ne^{inx}</math> respectively. Then {{Equation box 1 |indent = |title= |equation = {{NumBlk|:|<math>\sum_{n=-\infty}^\infty a_n\overline{b_n} = \frac{1}{2\pi} \int_{-\pi}^\pi A(x)\overline{B(x)} \, \mathrm{d}x,</math>|{{EquationRef|Eq.1}}}} |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} where <math>i</math> is the [[imaginary unit]] and horizontal bars indicate [[complex conjugation]]. Substituting <math>A(x)</math> and <math>\overline{B(x)}</math>: :<math> \begin{align} \sum_{n=-\infty}^\infty a_n\overline{b_n} &= \frac{1}{2\pi} \int_{-\pi}^\pi \biggl( \sum_{n=-\infty}^\infty a_ne^{inx} \biggr) \biggl( \sum_{n=-\infty}^\infty \overline{b_n}e^{-inx} \biggr) \, \mathrm{d}x \\[6pt] &= \frac{1}{2\pi} \int_{-\pi}^\pi \Bigl(a_1e^{i1x} + a_2e^{i2x} + \cdots\Bigr) \Bigl(\overline{b_1}e^{-i1x} + \overline{b_2}e^{-i2x} + \cdots\Bigr) \, \mathrm{d}x \\[6pt] &= \frac{1}{2\pi} \int_{-\pi}^\pi \left(a_1e^{i1x} \overline{b_1}e^{-i1x} + a_1e^{i1x} \overline{b_2}e^{-i2x} + a_2e^{i2x} \overline{b_1}e^{-i1x} + a_2e^{i2x} \overline{b_2}e^{-i2x} + \cdots \right) \mathrm{d}x \\[6pt] &= \frac{1}{2\pi} \int_{-\pi}^\pi \left(a_1 \overline{b_1} + a_1 \overline{b_2}e^{-ix} + a_2 \overline{b_1}e^{ix} + a_2 \overline{b_2} + \cdots\right) \mathrm{d}x \end{align} </math> As is the case with the middle terms in this example, many terms will integrate to <math>0</math> over a full [[Periodic_function|period]] of length <math>2\pi</math> (see [[harmonic|harmonics]]): :<math> \begin{align} \sum_{n=-\infty}^\infty a_n\overline{b_n} &= \frac{1}{2\pi} \left[a_1 \overline{b_1} x + i a_1 \overline{b_2}e^{-ix} - i a_2 \overline{b_1}e^{ix} + a_2 \overline{b_2} x + \cdots\right] _{-\pi} ^{+\pi} \\[6pt] &= \frac{1}{2\pi} \left(2\pi a_1 \overline{b_1} + 0 + 0 + 2\pi a_2 \overline{b_2} + \cdots\right) \\[6pt] &= a_1 \overline{b_1} + a_2 \overline{b_2} + \cdots \\[6pt] \end{align}</math> More generally, if <math>A(x)</math> and <math>B(x)</math> are instead two complex-valued functions on <math>\mathbb{R}</math> of period <math>P</math> that are [[square integrable]] (with respect to the [[Lebesgue measure]]) over intervals of period length, with [[Fourier series]] :<math>A(x)=\sum_{n=-\infty}^\infty a_ne^{2\pi ni\left(\frac{x}{P}\right)}</math> and<br /> :<math>B(x)=\sum_{n=-\infty}^\infty b_ne^{2\pi ni\left(\frac{x}{P}\right)}</math> respectively. Then {{Equation box 1 |indent = |title= |equation = {{NumBlk|:|<math>\sum_{n=-\infty}^\infty a_n\overline{b_n} = \frac{1}{P} \int_{-P/2}^{P/2} A(x)\overline{B(x)} \, \mathrm{d}x,</math>|{{EquationRef|Eq.2}}}} |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} Even more generally, given an [[Locally compact abelian group|abelian locally compact group]] ''G'' with [[Pontryagin dual]] ''G^'', Parseval's theorem says the Pontryagin–Fourier transform is a unitary operator between [[Hilbert spaces]] ''L''<sup>2</sup>(''G'') and ''L''<sup>2</sup>(''G^'') (with integration being against the appropriately scaled [[Haar measure|Haar measures]] on the two groups.) When ''G'' is the [[unit circle]] '''T''', ''G^'' is the integers and this is the case discussed above. When ''G'' is the real line <math>\mathbb{R}</math>, ''G^'' is also <math>\mathbb{R}</math> and the unitary transform is the [[Fourier transform]] on the real line. When ''G'' is the [[cyclic group]] '''Z'''<sub>n</sub>, again it is self-dual and the Pontryagin–Fourier transform is what is called [[discrete Fourier transform]] in applied contexts. Parseval's theorem can also be expressed as follows: Suppose <math>f(x)</math> is a square-integrable function over <math>[-\pi, \pi]</math> (i.e., <math>f(x)</math> and <math>f^2(x)</math> are integrable on that interval), with the Fourier series :<math>f(x) \simeq \tfrac12 a_0 + \sum_{n=1}^{\infty} \bigl(a_n \cos(nx) + b_n \sin(nx)\bigr).</math> Then<ref>{{cite book | page=439 | author=Arthur E. Danese | title=Advanced Calculus | volume=1 | publisher=Allyn and Bacon, Inc. | location=Boston, MA | year=1965 }}</ref><ref>{{cite book |page=[https://archive.org/details/advancedcalculus00kapl_841/page/n533 519] | author=Wilfred Kaplan | title=Advanced Calculus |url=https://archive.org/details/advancedcalculus00kapl_841 |url-access=limited | publisher=Addison Wesley | location=Reading, MA | year=1991 | edition=4th | isbn=0-201-57888-3 |author-link=Wilfred Kaplan }}</ref><ref>{{cite book | page=[https://archive.org/details/fourierseries00tols/page/119 119] | author=Georgi P. Tolstov | title=Fourier Series | url=https://archive.org/details/fourierseries00tols | url-access=registration | translator-last=Silverman | translator-first=Richard | publisher=Prentice-Hall, Inc. | location=Englewood Cliffs, NJ | year=1962 }}</ref> :<math>\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \,\mathrm{d}x = \tfrac12 a_0^2 + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right).</math> == Notation used in engineering == In [[electrical engineering]], Parseval's theorem is often written as: :<math>\int_{-\infty}^\infty \bigl| x(t) \bigr|^2 \, \mathrm{d}t = \frac{1}{2\pi} \int_{-\infty}^\infty \bigl| X(\omega) \bigr|^2 \, \mathrm{d}\omega = \int_{-\infty}^\infty \bigl| X(2\pi f) \bigr|^2 \, \mathrm{d}f</math> where <math>X(\omega) = \mathcal{F}_\omega\{ x(t) \}</math> represents the [[continuous Fourier transform]] (in non-unitary form) of <math>x(t)</math>, and <math>\omega = 2\pi f</math> is frequency in radians per second. The interpretation of this form of the theorem is that the total [[Energy (signal processing)|energy]] of a signal can be calculated by summing power-per-sample across time or spectral power across frequency. For [[discrete time]] [[signal (information theory)|signals]], the theorem becomes: :<math>\sum_{n=-\infty}^\infty \bigl| x[n] \bigr|^2 = \frac{1}{2\pi} \int_{-\pi}^\pi \bigl| X_{2\pi}({\phi}) \bigr|^2 \mathrm{d}\phi</math> where <math>X_{2\pi}</math> is the [[discrete-time Fourier transform]] (DTFT) of <math>x</math> and <math>\phi</math> represents the [[angular frequency]] (in [[radian]]s per sample) of <math>x</math>. Alternatively, for the [[discrete Fourier transform]] (DFT), the relation becomes: :<math> \sum_{n=0}^{N-1} \bigl| x[n] \bigr|^2 = \frac{1}{N} \sum_{k=0}^{N-1} \bigl| X[k] \bigr|^2</math> where <math>X[k]</math> is the DFT of <math>x[n]</math>, both of length <math>N</math>. We show the DFT case below. For the other cases, the proof is similar. By using the definition of inverse DFT of <math>X[k]</math>, we can derive :<math>\begin{align} \frac{1}{N} \sum_{k=0}^{N-1} \bigl| X[k] \bigr|^2 &= \frac{1}{N} \sum_{k=0}^{N-1} X[k]\cdot X^*[k] = \frac{1}{N} \sum_{k=0}^{N-1} \Biggl(\sum_{n=0}^{N-1} x[n]\,\exp\left(-j\frac{2\pi}{N}k\,n\right)\Biggr) \, X^*[k] \\[5mu] &= \frac{1}{N} \sum_{n=0}^{N-1} x[n] \Biggl(\sum_{k=0}^{N-1} X^*[k]\,\exp\left(-j\frac{2\pi}{N}k\,n\right)\Biggr) = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \bigl(N \cdot x^*[n]\bigr) \\[5mu] &= \sum_{n=0}^{N-1} \bigl| x[n] \bigr|^2, \end{align}</math> where <math>*</math> represents complex conjugate. == See also == Parseval's theorem is closely related to other mathematical results involving unitary transformations: *[[Parseval's identity]] *[[Plancherel's theorem]] *[[Wiener–Khinchin theorem]] *[[Bessel's inequality]] ==Notes== {{reflist}} ==External links== * [http://mathworld.wolfram.com/ParsevalsTheorem.html Parseval's Theorem] on Mathworld [[Category:Theorems in Fourier analysis]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Equation box 1
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)