Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Plancherel theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Theorem in harmonic analysis}} In [[mathematics]], the '''Plancherel theorem''' (sometimes called the '''Parseval–Plancherel identity''') is a result in [[harmonic analysis]], proven by [[Michel Plancherel]] in 1910. It is a generalization of [[Parseval's theorem]]; often used in the fields of science and engineering, proving the [[unitary transformation|unitarity]] of the [[Fourier transform]]. The theorem states that the integral of a function's [[squared modulus]] is equal to the integral of the squared modulus of its [[frequency spectrum]]. That is, if <math>f(x) </math> is a function on the real line, and <math>\widehat{f}(\xi)</math> is its frequency spectrum, then {{Equation box 1 |indent = |title= |equation = <math>\int_{-\infty}^\infty |f(x)|^2 \, dx = \int_{-\infty}^\infty |\widehat{f}(\xi)|^2 \, d\xi</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} == Formal definition == The [[Fourier transform]] of an [[Lp space|''L''<sup>''1''</sup>]] function <math>f</math> on the [[real line]] <math>\mathbb R</math> is defined as the [[Lebesgue integral]] <math display="block">\hat f(\xi) = \int_{\mathbb R} f(x)e^{-2\pi i x\xi}dx.</math> If <math>f</math> belongs to both <math>L^1</math> and <math>L^2</math>, then the Plancherel theorem states that <math>\hat f</math> also belongs to <math>L^2</math>, and the Fourier transform is an [[isometry]] with respect to the ''L''<sup>2</sup> norm, which is to say that <math display="block">\int_{-\infty}^\infty |f(x)|^2 \, dx = \int_{-\infty}^\infty |\widehat{f}(\xi)|^2 \, d\xi</math> This implies that the Fourier transform restricted to <math>L^1(\mathbb{R}) \cap L^2(\mathbb{R})</math> has a unique extension to a [[Linear isometry|linear isometric map]] <math>L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})</math>, sometimes called the Plancherel transform. This isometry is actually a [[unitary operator|unitary]] map. In effect, this makes it possible to speak of Fourier transforms of [[quadratically integrable function]]s. A proof of the theorem is available from ''Rudin (1987, Chapter 9)''. The basic idea is to prove it for [[Gaussian distribution]]s, and then use density. But a standard Gaussian is transformed to itself under the Fourier transformation, and the theorem is trivial in that case. Finally, the standard transformation properties of the Fourier transform then imply Plancherel for all Gaussians. Plancherel's theorem remains valid as stated on ''n''-dimensional [[Euclidean space]] <math>\mathbb{R}^n</math>. The theorem also holds more generally in [[locally compact abelian group]]s. There is also a version of the Plancherel theorem which makes sense for non-commutative locally compact groups satisfying certain technical assumptions. This is the subject of [[non-commutative harmonic analysis]]. Due to the [[polarization identity]], one can also apply Plancherel's theorem to the [[Lp space|<math>L^2(\mathbb{R})</math>]] [[inner product]] of two functions. That is, if <math>f(x)</math> and <math>g(x)</math> are two <math>L^2(\mathbb{R})</math> functions, and <math> \mathcal P</math> denotes the Plancherel transform, then <math display="block">\int_{-\infty}^\infty f(x)\overline{g(x)} \, dx = \int_{-\infty}^\infty (\mathcal P f)(\xi) \overline{(\mathcal P g)(\xi)} \, d\xi,</math> and if <math>f(x)</math> and <math>g(x)</math> are furthermore <math>L^1(\mathbb{R})</math> functions, then <math display="block"> (\mathcal P f)(\xi) = \widehat{f}(\xi) = \int_{-\infty}^\infty f(x) e^{-2\pi i \xi x} \, dx ,</math> and <math display="block"> (\mathcal P g)(\xi) = \widehat{g}(\xi) = \int_{-\infty}^\infty g(x) e^{-2\pi i \xi x} \, dx ,</math> so {{Equation box 1 |indent = |title= |equation = <math>\int_{-\infty}^\infty f(x)\overline{g(x)} \, dx = \int_{-\infty}^\infty \widehat{f}(\xi) \overline{\widehat{g}(\xi)} \, d\xi.</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} ==Locally compact groups== There is also a Plancherel theorem for the Fourier transform in [[locally compact group]]s. In the case of an [[abelian group]] <math>G</math>, there is a [[Pontryagin dual]] group <math>\widehat G</math> of characters on <math>G</math>. Given a [[Haar measure]] on <math>G</math>, the Fourier transform of a function in <math>L^1(G)</math> is <math display="block">\hat f(\chi) = \int_G \overline{\chi(g)}f(g)\,dg</math> for <math>\chi</math> a character on <math>G</math>. The Plancherel theorem states that there is a Haar measure on <math>\widehat G</math>, the ''dual measure'' such that <math display="block">\|f\|_G^2 = \|\hat f\|_{\widehat G}^2</math> for all <math>f\in L^1\cap L^2</math> (and the Fourier transform is also in <math>L^2</math>). The theorem also holds in many non-abelian locally compact groups, except that the set of irreducible unitary representations <math>\widehat G</math> may not be a group. For example, when <math>G</math> is a finite group, <math>\widehat G</math> is the set of irreducible characters. From basic [[character theory]], if <math>f</math> is a [[class function]], we have the Parseval formula <math display="block">\|f\|_G^2 = \|\hat f\|_{\widehat G}^2</math> <math display="block">\|f\|_G^2 = \frac{1}{|G|}\sum_{g\in G} |f(g)|^2, \quad \|\hat f\|_{\widehat G}^2 = \sum_{\rho\in\widehat G} (\dim\rho)^2|\hat f(\rho)|^2.</math> More generally, when <math>f</math> is not a class function, the norm is <math display="block">\|\hat f\|_{\widehat G}^2 = \sum_{\rho\in\widehat G} \dim\rho\,\operatorname{tr}(\hat f(\rho)^*\hat f(\rho))</math> so the [[Plancherel measure]] weights each representation by its dimension. In full generality, a Plancherel theorem is <math display="block">\|f\|^2_G = \int_{\hat G} \|\hat f(\rho)\|_{HS}^2d\mu(\rho)</math> where the norm is the [[Hilbert-Schmidt norm]] of the operator <math display="block">\hat f(\rho) = \int_G f(g)\rho(g)^*\,dg</math> and the measure <math>\mu</math>, if one exists, is called the Plancherel measure. ==See also== * [[Carleson's theorem]] *[[Plancherel theorem for spherical functions]] == References == <references /> * {{citation|doi=10.1007/BF03014877|last=Plancherel|first=Michel|authorlink=Michel Plancherel|year=1910|title=Contribution à l'étude de la représentation d'une fonction arbitraire par des intégrales définies|journal=[[Rendiconti del Circolo Matematico di Palermo]]|volume=30|issue=1|pages=289–335|s2cid=122509369 }}. * {{citation|first=J.|last=Dixmier|authorlink=Jacques Dixmier|title=Les C*-algèbres et leurs Représentations|publisher=Gauthier Villars|year=1969}}. * {{citation|first=K.|last=Yosida|authorlink=Kōsaku Yosida|title=Functional Analysis|publisher=Springer Verlag|year=1968}}. * {{citation|first=Walter|last=Rudin|authorlink=Walter Rudin|year=1987|title=Real and Complex Analysis|publisher=McGraw-Hill Book Company|chapter=9 Fourier Transforms|edition=3}}. ==External links== * {{springer|title=Plancherel theorem|id=p/p072770}} * [http://mathworld.wolfram.com/PlancherelsTheorem.html Plancherel's Theorem] on Mathworld {{Lp spaces}} {{Functional analysis}} [[Category:Theorems in functional analysis]] [[Category:Theorems in harmonic analysis]] [[Category:Theorems in Fourier analysis]] [[Category:Lp spaces]] {{mathanalysis-stub}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Equation box 1
(
edit
)
Template:Functional analysis
(
edit
)
Template:Lp spaces
(
edit
)
Template:Mathanalysis-stub
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)