Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Poisson bracket
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Operation in Hamiltonian mechanics}} [[File:Simeon Poisson.jpg|thumb|Siméon Denis Poisson]] {{Classical mechanics|expanded=Formulations}} In [[mathematics]] and [[classical mechanics]], the '''Poisson bracket''' is an important [[binary operation]] in [[Hamiltonian mechanics]], playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian [[dynamical system]]. The Poisson bracket also distinguishes a certain class of coordinate transformations, called ''[[canonical transformations]]'', which map [[Canonical coordinates|canonical coordinate systems]] into other canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables (below symbolized by <math>q_i</math> and <math>p_i</math>, respectively) that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself <math>\mathcal H =\mathcal H(q, p, t)</math> as one of the new canonical momentum coordinates. In a more general sense, the Poisson bracket is used to define a [[Poisson algebra]], of which the algebra of functions on a [[Poisson manifold]] is a special case. There are other general examples, as well: it occurs in the theory of [[Lie algebra]]s, where the [[tensor algebra]] of a Lie algebra forms a Poisson algebra; a detailed construction of how this comes about is given in the [[universal enveloping algebra]] article. Quantum deformations of the universal enveloping algebra lead to the notion of [[quantum group]]s. All of these objects are named in honor of French mathematician [[Siméon Denis Poisson]]. He introduced the Poisson bracket in his 1809 treatise on mechanics.<ref name="Poisson1809">[[#poisson1881|S. D. Poisson (1809)]]</ref><ref name="Marle2009">[[#marle2009|C. M. Marle (2009)]]</ref> ==Properties== Given two functions {{mvar|f}} and {{mvar|g}} that depend on [[phase space]] and time, their Poisson bracket <math>\{f, g\}</math> is another function that depends on phase space and time. The following rules hold for any three functions <math>f,\, g,\, h</math> of phase space and time: ;[[Anticommutativity]]: <math>\{f, g\} = -\{g, f\}</math> ;[[Bilinearity]]: <math>\{af + bg, h\} = a\{f, h\} + b\{g, h\}, </math><math> \{h, af + bg\} = a\{h, f\} + b\{h, g\}, \quad a, b \in \mathbb R</math> ;[[Product rule|Leibniz's rule]]: <math>\{fg, h\} = \{f, h\}g + f\{g, h\}</math> ;[[Jacobi identity]]: <math>\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0</math> Also, if a function <math>k</math> is constant over phase space (but may depend on time), then <math>\{f,\, k\} = 0</math> for any <math>f</math>. ==Definition in canonical coordinates== In [[canonical coordinates]] (also known as [[Darboux coordinates]]) <math> (q_i,\, p_i)</math> on the [[phase space]], given two functions <math> f(p_i,\, q_i, t)</math> and <math> g(p_i,\, q_i, t)</math>,<ref group="Note"><math> f(p_i,\, q_i,\, t)</math> means <math>f</math> is a function of the <math>2N + 1</math> independent variables: momentum, <math>p_{1 \dots N}</math>; position, <math>q_{1 \dots N}</math>; and time, <math>t</math></ref> the Poisson bracket takes the form <math display="block">\{f, g\} = \sum_{i=1}^{N} \left( \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right).</math> The Poisson brackets of the canonical coordinates are <math display="block">\begin{align} \{q_k,q_l\} &= \sum_{i=1}^{N} \left( \frac{\partial q_k}{\partial q_{i}} \frac{\partial q_l}{\partial p_{i}} - \frac{\partial q_k}{\partial p_i} \frac{\partial q_l}{\partial q_i}\right) = \sum_{i=1}^{N} \left( \delta_{ki} \cdot 0 - 0 \cdot \delta_{li}\right) = 0, \\ \{p_k,p_l\} &=\sum_{i=1}^{N} \left( \frac{\partial p_k}{\partial q_{i}} \frac{\partial p_l}{\partial p_{i}} - \frac{\partial p_k}{\partial p_i} \frac{\partial p_l}{\partial q_i}\right) = \sum_{i=1}^{N} \left( 0 \cdot \delta_{li} - \delta_{ki} \cdot 0\right) = 0, \\ \{q_k,p_l\} &= \sum_{i=1}^{N} \left( \frac{\partial q_k}{\partial q_{i}} \frac{\partial p_l}{\partial p_{i}} - \frac{\partial q_k}{\partial p_i} \frac{\partial p_l}{\partial q_i}\right) = \sum_{i=1}^{N} \left( \delta_{ki} \cdot \delta_{li} - 0 \cdot 0\right) = \delta_{kl}, \end{align}</math> where <math>\delta_{ij}</math> is the [[Kronecker delta]]. == Hamilton's equations of motion == [[Hamilton's equations of motion]] have an equivalent expression in terms of the Poisson bracket. This may be most directly demonstrated in an explicit coordinate frame. Suppose that <math>f(p, q, t)</math> is a function on the solution's trajectory-manifold. Then from the multivariable [[chain rule]], <math display="block">\frac{d}{dt} f(p, q, t) = \frac{\partial f}{\partial q} \frac{dq}{dt} + \frac {\partial f}{\partial p} \frac{dp}{dt} + \frac{\partial f}{\partial t}.</math> Further, one may take <math>p = p(t)</math> and <math>q = q(t)</math> to be solutions to [[Hamilton's equations]]; that is, <math display="block">\begin{align} \frac{d q}{d t} &= \frac{\partial \mathcal H}{\partial p} = \{q, \mathcal H\}, \\ \frac{d p}{d t} &= -\frac{\partial \mathcal H}{\partial q} = \{p, \mathcal H\}. \end{align}</math> Then <math display="block">\begin{align} \frac {d}{dt} f(p, q, t) &= \frac{\partial f}{\partial q} \frac{\partial \mathcal H}{\partial p} - \frac{\partial f}{\partial p} \frac{\partial \mathcal H}{\partial q} + \frac{\partial f}{\partial t} \\ &= \{f, \mathcal H\} + \frac{\partial f}{\partial t} ~. \end{align}</math> Thus, the time evolution of a function <math>f</math> on a [[symplectic manifold]] can be given as a [[flow (mathematics)|one-parameter family]] of [[symplectomorphism]]s (i.e., [[canonical transformations]], area-preserving diffeomorphisms), with the time <math>t</math> being the parameter: Hamiltonian motion is a canonical transformation generated by the Hamiltonian. That is, Poisson brackets are preserved in it, so that ''any time <math>t</math>'' in the solution to Hamilton's equations, <math display="block"> q(t) = \exp (-t \{ \mathcal H, \cdot \} ) q(0), \quad p(t) = \exp (-t \{ \mathcal H, \cdot \}) p(0), </math> can serve as the bracket coordinates. ''Poisson brackets are [[Canonical transformation|canonical invariants]]''. Dropping the coordinates, <math display="block">\frac{d}{dt} f = \left(\frac{\partial}{\partial t} - \{\mathcal H, \cdot\}\right)f.</math> The operator in the convective part of the derivative, <math>i\hat{L} = -\{\mathcal H, \cdot\}</math>, is sometimes referred to as the Liouvillian (see [[Liouville's theorem (Hamiltonian)]]). == Poisson matrix in canonical transformations == {{Main|Canonical transformation}} The concept of Poisson brackets can be expanded to that of matrices by defining the Poisson matrix. Consider the following canonical transformation:<math display="block">\eta = \begin{bmatrix} q_1\\ \vdots \\ q_N\\ p_1\\ \vdots\\ p_N\\ \end{bmatrix} \quad \rightarrow \quad \varepsilon = \begin{bmatrix} Q_1\\ \vdots \\ Q_N\\ P_1\\ \vdots\\ P_N\\ \end{bmatrix} </math>Defining <math display="inline">M := \frac{\partial (\mathbf{Q}, \mathbf{P})}{\partial (\mathbf{q}, \mathbf{p})}</math>, the Poisson matrix is defined as <math display="inline">\mathcal P(\varepsilon) = MJM^T </math>, where <math>J</math> is the symplectic matrix under the same conventions used to order the set of coordinates. It follows from the definition that:<math display="block">\mathcal P_{ij}(\varepsilon) = [MJM^T]_{ij}=\sum_{k=1}^{N} \left( \frac{\partial \varepsilon_i}{\partial \eta_{k}} \frac{\partial \varepsilon_j}{\partial \eta_{N+k}} - \frac{\partial \varepsilon_i}{\partial \eta_{N+k}} \frac{\partial \varepsilon_j}{\partial \eta_k}\right)=\sum_{k=1}^{N} \left( \frac{\partial \varepsilon_i}{\partial q_{k}} \frac{\partial \varepsilon_j}{\partial p_k} - \frac{\partial \varepsilon_i}{\partial p_k} \frac{\partial \varepsilon_j}{\partial q_k}\right)=\{ \varepsilon_i,\varepsilon_j\}_\eta. </math> The Poisson matrix satisfies the following known properties:<math display="block">\begin{align} \mathcal P^T &= - \mathcal P \\ |\mathcal P| &= \frac{1}{|M|^2}\\ \mathcal P^{-1}(\varepsilon)&= -(M^{-1})^T J M^{-1} = - \mathcal L (\varepsilon)\\ \end{align} </math> where the <math display="inline">\mathcal L(\varepsilon) </math> is known as a Lagrange matrix and whose elements correspond to [[Lagrange bracket]]s. The last identity can also be stated as the following:<math display="block">\sum_{k=1}^{2N} \{\eta_i,\eta_k\}[\eta_k,\eta_j] = -\delta_{ij} </math>Note that the summation here involves generalized coordinates as well as generalized momentum. The invariance of Poisson bracket can be expressed as: <math display="inline">\{ \varepsilon_i,\varepsilon_j\}_\eta=\{ \varepsilon_i,\varepsilon_j\}_\varepsilon = J_{ij} </math>, which directly leads to the symplectic condition: <math display="inline">MJM^T = J </math>.<ref>{{Cite book |last=Giacaglia |first=Giorgio E. O. |title=Perturbation methods in non-linear systems |date=1972 |publisher=Springer |isbn=978-3-540-90054-2 |series=Applied mathematical sciences |location=New York Heidelberg |pages=8–9}}</ref> ==Constants of motion== An [[integrable system]] will have [[constants of motion]] in addition to the energy. Such constants of motion will commute with the Hamiltonian under the Poisson bracket. Suppose some function <math>f(p, q)</math> is a constant of motion. This implies that if <math>p(t), q(t)</math> is a [[trajectory]] or solution to [[Hamilton's equations of motion]], then along that trajectory:<math display="block">0 = \frac{df}{dt}</math>Where, as above, the intermediate step follows by applying the equations of motion and we assume that <math>f</math> does not explicitly depend on time. This equation is known as the [[Liouville's theorem (Hamiltonian)#Liouville equations|Liouville equation]]. The content of [[Liouville's theorem (Hamiltonian)|Liouville's theorem]] is that the time evolution of a [[measure (mathematics)|measure]] given by a [[Distribution function (physics)|distribution function]] <math>f</math> is given by the above equation. If the Poisson bracket of <math>f</math> and <math>g</math> vanishes (<math>\{f,g\} = 0</math>), then <math>f</math> and <math>g</math> are said to be '''in involution'''. In order for a Hamiltonian system to be [[completely integrable]], <math>n</math> independent constants of motion must be in [[Distribution (differential geometry)#Involutive distributions|mutual involution]], where <math>n</math> is the number of degrees of freedom. Furthermore, according to '''Poisson's Theorem''', if two quantities <math>A</math> and <math>B</math> are explicitly time independent (<math>A(p, q), B(p, q)</math>) constants of motion, so is their Poisson bracket <math>\{A,\, B\}</math>. This does not always supply a useful result, however, since the number of possible constants of motion is limited (<math>2n - 1</math> for a system with <math>n</math> degrees of freedom), and so the result may be trivial (a constant, or a function of <math>A</math> and <math>B</math>.) ==The Poisson bracket in coordinate-free language== Let <math>M</math> be a [[symplectic manifold]], that is, a [[manifold]] equipped with a [[symplectic form]]: a [[Differential form|2-form]] <math>\omega</math> which is both '''closed''' (i.e., its [[exterior derivative]] <math>d \omega</math> vanishes) and '''non-degenerate'''. For example, in the treatment above, take <math>M</math> to be <math>\mathbb{R}^{2n}</math> and take <math display="block">\omega = \sum_{i=1}^{n} d q_i \wedge d p_i.</math> If <math> \iota_v \omega</math> is the [[interior product]] or [[Tensor contraction|contraction]] operation defined by <math> (\iota_v \omega)(u) = \omega(v,\, u)</math>, then non-degeneracy is equivalent to saying that for every one-form <math>\alpha</math> there is a unique vector field <math>\Omega_\alpha</math> such that <math> \iota_{\Omega_\alpha} \omega = \alpha</math>. Alternatively, <math> \Omega_{d H} = \omega^{-1}(d H)</math>. Then if <math>H</math> is a smooth function on <math>M</math>, the [[Hamiltonian vector field]] <math>X_H</math> can be defined to be <math> \Omega_{d H}</math>. It is easy to see that <math display="block">\begin{align} X_{p_i} &= \frac{\partial}{\partial q_i} \\ X_{q_i} &= -\frac{\partial}{\partial p_i}. \end{align}</math> The '''Poisson bracket''' <math>\ \{\cdot,\, \cdot\} </math> on {{math|(''M'', ''ω'')}} is a [[bilinear map|bilinear operation]] on [[differentiable function]]s, defined by <math> \{f,\, g\} \;=\; \omega(X_f,\, X_g) </math>; the Poisson bracket of two functions on {{math|''M''}} is itself a function on {{math|''M''}}. The Poisson bracket is antisymmetric because: <math display="block">\{f, g\} = \omega(X_f, X_g) = -\omega(X_g, X_f) = -\{g, f\} .</math> Furthermore, {{NumBlk||<math display="block">\begin{align} \{f, g\} &= \omega(X_f, X_g) = \omega(\Omega_{df}, X_g) \\ &= (\iota_{\Omega_{df}}\omega)(X_g) = df(X_g) \\ &= X_g f = \mathcal{L}_{X_g} f. \end{align}</math>|{{EquationRef|1}}}} Here {{math|''X<sub>g</sub>f''}} denotes the vector field {{math|''X<sub>g</sub>''}} applied to the function {{math|''f''}} as a directional derivative, and <math>\mathcal{L}_{X_g} f</math> denotes the (entirely equivalent) [[Lie derivative]] of the function {{math|''f''}}. If {{math|α}} is an arbitrary one-form on {{math|''M''}}, the vector field {{math|Ω<sub>α</sub>}} generates (at least locally) a [[flow (mathematics)|flow]] <math> \phi_x(t)</math> satisfying the boundary condition <math> \phi_x(0) = x</math> and the first-order differential equation <math display="block">\frac{d\phi_x}{dt} = \left. \Omega_\alpha \right|_{\phi_x(t)}.</math> The <math> \phi_x(t)</math> will be [[symplectomorphism]]s ([[canonical transformation]]s) for every {{math|''t''}} as a function of {{math|''x''}} if and only if <math> \mathcal{L}_{\Omega_\alpha}\omega \;=\; 0</math>; when this is true, {{math|Ω<sub>α</sub>}} is called a [[symplectic vector field]]. Recalling [[Cartan's identity]] <math> \mathcal{L}_X\omega \;=\; d (\iota_X \omega) \,+\, \iota_X d\omega</math> and {{math|1=''d''ω = 0}}, it follows that <math> \mathcal{L}_{\Omega_\alpha}\omega \;=\; d\left(\iota_{\Omega_\alpha} \omega\right) \;=\; d\alpha</math>. Therefore, {{math|Ω<sub>α</sub>}} is a symplectic vector field if and only if α is a [[Closed and exact differential forms|closed form]]. Since <math> d(df) \;=\; d^2f \;=\; 0</math>, it follows that every Hamiltonian vector field {{math|''X<sub>f</sub>''}} is a symplectic vector field, and that the Hamiltonian flow consists of canonical transformations. From {{EquationNote|1|(1)}} above, under the Hamiltonian flow <math>X_\mathcal H</math>, <math display="block">\frac{d}{dt}f(\phi_x(t)) = X_\mathcal{H}f = \{f,\mathcal H\}.</math> This is a fundamental result in Hamiltonian mechanics, governing the time evolution of functions defined on phase space. As noted above, when {{math|1={''f'',''\mathcal H''} = 0}}, {{math|''f''}} is a constant of motion of the system. In addition, in canonical coordinates (with <math> \{p_i,\, p_j\} \;=\; \{q_i,q_j\} \;=\; 0</math> and <math>\{q_i,\, p_j\} \;=\; \delta_{ij}</math>), Hamilton's equations for the time evolution of the system follow immediately from this formula. It also follows from {{EquationNote|1|(1)}} that the Poisson bracket is a [[derivation (abstract algebra)|derivation]]; that is, it satisfies a non-commutative version of Leibniz's [[product rule]]: {{NumBlk||<math display="block">\{fg,h\} = f\{g,h\} + g\{f,h\},</math> and <math display="block">\{f,gh\} = g\{f,h\} + h\{f,g\}.</math>|{{EquationRef|2}}}} The Poisson bracket is intimately connected to the [[Lie bracket of vector fields|Lie bracket]] of the Hamiltonian vector fields. Because the Lie derivative is a derivation, <math display="block">\mathcal L_v\iota_u\omega = \iota_{\mathcal L_vu}\omega + \iota_u\mathcal L_v\omega = \iota_{[v,u]}\omega + \iota_u\mathcal L_v\omega.</math> Thus if {{math|''v''}} and {{math|''u''}} are symplectic, using <math> \mathcal{L}_v\omega =0=\mathcal L_u\omega</math>, Cartan's identity, and the fact that <math>\iota_u\omega</math> is a closed form, <math display="block">\iota_{[v,u]}\omega = \mathcal L_v\iota_u\omega = d(\iota_v\iota_u\omega) + \iota_vd(\iota_u\omega) = d(\iota_v\iota_u\omega) = d(\omega(u,v)).</math> It follows that <math>[v,u] = X_{\omega(u,v)}</math>, so that {{NumBlk||<math display="block">[X_f,X_g] = X_{\omega(X_g,X_f)} = -X_{\omega(X_f,X_g)} = -X_{\{f,g\}}.</math>|{{EquationRef|3}}}} Thus, the Poisson bracket on functions corresponds to the Lie bracket of the associated Hamiltonian vector fields. We have also shown that the Lie bracket of two symplectic vector fields is a Hamiltonian vector field and hence is also symplectic. In the language of [[abstract algebra]], the symplectic vector fields form a [[subalgebra]] of the [[Lie algebra]] of smooth vector fields on {{math|''M''}}, and the Hamiltonian vector fields form an [[algebraic ideal|ideal]] of this subalgebra. The symplectic vector fields are the Lie algebra of the (infinite-dimensional) [[Lie group]] of [[symplectomorphism]]s of {{math|''M''}}. It is widely asserted that the [[Jacobi identity]] for the Poisson bracket, <math display="block">\{f,\{g,h\}\} + \{g,\{h,f\}\} + \{h,\{f,g\}\} = 0</math> follows from the corresponding identity for the Lie bracket of vector fields, but this is true only up to a locally constant function. However, to prove the Jacobi identity for the Poisson bracket, it is [[Jacobi identity#Examples|sufficient]] to show that: <math display="block">\operatorname{ad}_{\{g,f\}}=\operatorname{ad}_{-\{f,g\}}=[\operatorname{ad}_f,\operatorname{ad}_g]</math> where the operator <math>\operatorname{ad}_g</math> on smooth functions on {{math|''M''}} is defined by <math>\operatorname{ad}_g(\cdot) \;=\; \{\cdot,\, g\}</math> and the bracket on the right-hand side is the commutator of operators, <math> [\operatorname A,\, \operatorname B] \;=\; \operatorname A\operatorname B - \operatorname B\operatorname A</math>. By {{EquationNote|1|(1)}}, the operator <math>\operatorname{ad}_g</math> is equal to the operator {{math|''X<sub>g</sub>''}}. The proof of the Jacobi identity follows from {{EquationNote|3|(3)}} because, up to the factor of -1, the Lie bracket of vector fields is just their commutator as differential operators. The [[Algebra over a field|algebra]] of smooth functions on M, together with the Poisson bracket forms a [[Poisson algebra]], because it is a [[Lie algebra]] under the Poisson bracket, which additionally satisfies Leibniz's rule {{EquationNote|2|(2)}}. We have shown that every [[symplectic manifold]] is a [[Poisson manifold]], that is a manifold with a "curly-bracket" operator on smooth functions such that the smooth functions form a Poisson algebra. However, not every Poisson manifold arises in this way, because Poisson manifolds allow for degeneracy which cannot arise in the symplectic case. ==A result on conjugate momenta== Given a smooth [[vector field]] <math>X</math> on the configuration space, let <math>P_X</math> be its [[conjugate momentum]]. The conjugate momentum mapping is a [[Lie algebra]] anti-homomorphism from the [[Lie bracket of vector fields|Lie bracket]] to the Poisson bracket: <math display="block">\{P_X, P_Y\} = -P_{[X, Y]}.</math> This important result is worth a short proof. Write a vector field <math>X</math> at point <math>q</math> in the [[Configuration space (physics)|configuration space]] as <math display="block">X_q = \sum_i X^i(q) \frac{\partial}{\partial q^i}</math> where <math display="inline"> \frac{\partial}{\partial q^i}</math> is the local coordinate frame. The conjugate momentum to <math>X</math> has the expression <math display="block">P_X(q, p) = \sum_i X^i(q) \;p_i</math> where the <math>p_i</math> are the momentum functions conjugate to the coordinates. One then has, for a point <math>(q,p)</math> in the [[phase space]], <math display="block">\begin{align} \{P_X,P_Y\}(q,p) &= \sum_i \sum_j \left\{ X^i(q) \;p_i, Y^j(q)\; p_j \right\} \\ &= \sum_{ij} p_i Y^j(q) \frac{\partial X^i}{\partial q^j} - p_j X^i(q) \frac{\partial Y^j}{\partial q^i} \\ &= -\sum_i p_i \; [X, Y]^i(q) \\ &= - P_{[X, Y]}(q, p). \end{align}</math> The above holds for all <math>(q, p)</math>, giving the desired result. ==Quantization== Poisson brackets [[Deformation theory|deform]] to [[Moyal bracket]]s upon [[Weyl quantization|quantization]], that is, they generalize to a different Lie algebra, the [[Moyal bracket|Moyal algebra]], or, equivalently in [[Hilbert space]], quantum [[commutator]]s. The Wigner-İnönü [[group contraction]] of these (the classical limit, {{math|ħ → 0}}) yields the above Lie algebra. To state this more explicitly and precisely, the [[universal enveloping algebra]] of the [[Heisenberg algebra]] is the [[Weyl algebra]] (modulo the relation that the center be the unit). The Moyal product is then a special case of the star product on the algebra of symbols. An explicit definition of the algebra of symbols, and the star product is given in the article on the [[universal enveloping algebra]]. ==See also== {{colbegin}} *[[Commutator]] *[[Dirac bracket]] *[[Lagrange bracket]] *[[Moyal bracket]] *[[Peierls bracket]] *[[Phase space]] *[[Poisson algebra]] *[[Poisson ring]] *[[Poisson superalgebra]] *[[Poisson superbracket]] {{colend}} ==Remarks== {{reflist|group=Note}} ==References== {{reflist}} * {{cite book |title=Mathematical Methods of Classical Mechanics |last=Arnold |first=Vladimir I. |author-link=Vladimir Arnold |edition=2nd |year=1989 |publisher=Springer |location=New York |isbn=978-0-387-96890-2 |url-access=registration |url=https://archive.org/details/mathematicalmeth0000arno }} * {{cite book |title=Mechanics |volume=1 |series=[[Course of Theoretical Physics]] |last1=Landau |first1=Lev D. |author-link1=Lev Landau |last2=Lifshitz| first2= Evegeny M.| author-link2=Evgeny Lifshitz|year=1982 |edition=3rd |publisher=Butterworth-Heinemann |isbn=978-0-7506-2896-9 }} *{{cite book|last1=Karasëv|first1=Mikhail V.|author-link2=Victor Pavlovich Maslov|last2=Maslov|first2=Victor P.|title=Nonlinear Poisson brackets, Geometry and Quantization|translator-first1=Alexey|translator-last1=Sossinsky| translator-first2=M.A.| translator-last2=Shishkova|series=Translations of Mathematical Monographs|volume=119|publisher=American Mathematical Society| location=Providence, RI|year=1993|mr=1214142|isbn=978-0821887967 }} *{{cite book|last1=Moretti|first1=Valter|title=Analytical Mechanics, Classical, Lagrangian and Hamiltonian Mechanics, Stability Theory, Special Relativity|series=UNITEXT|volume=150|publisher=Springer| year=2023|isbn=978-3-031-27612-5 }} *{{Cite journal|first1=Siméon-Denis|last1=Poisson|title=Mémoire sur la variation des constantes arbitraires dans les questions de Mécanique|journal=Journal de l'École polytechnique, 15e cahier|year=1809|volume=8|page=266-344|url=https://math.huji.ac.il/~piz/documents-others/SDP-1809.pdf|doi=|ref=poisson1809}} *{{Cite journal|first1=Charles-Michel|last1=Marle|authorlink1=Charles-Michel Marle|title=The Inception of Symplectic Geometry: the Works of Lagrange and Poisson During the Years 1808-1810|journal=Letters in Mathematical Physics|year=2009|volume=90|issue=1–3 |page=3-21|doi=10.1007/s11005-009-0347-y|arxiv=0902.0685|bibcode=2009LMaPh..90....3M |ref=marle2009}} ==External links== * {{springer|title=Poisson brackets|id=p/p073270}} * {{mathworld |urlname=PoissonBracket |title=Poisson bracket|author=[[Eric W. Weisstein]]}} [[Category:Symplectic geometry]] [[Category:Hamiltonian mechanics]] [[Category:Bilinear maps]] [[Category:Concepts in physics]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Classical mechanics
(
edit
)
Template:Colbegin
(
edit
)
Template:Colend
(
edit
)
Template:EquationNote
(
edit
)
Template:EquationRef
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:Mathworld
(
edit
)
Template:Mvar
(
edit
)
Template:NumBlk
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)