Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polar orbit
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Satellite orbit with high inclination}} [[File:Polar orbit.ogv|thumb|200px|Polar orbit]] A '''polar orbit''' is one in which a [[satellite]] [[pass (spaceflight)|pass]]es above or nearly above both [[Poles of astronomical bodies|poles]] of the body being [[orbit]]ed (usually a planet such as the [[Earth]], but possibly another body such as the [[Moon]] or [[Sun]]) on each revolution. It has an [[inclination]] of about 80–90 [[Degree (angle)|degree]]s to the body's [[equator]].<ref name="esa">{{cite web |url = http://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits |title=ESA - Types of Orbits |date=2020-03-30 |access-date=2021-01-10}}</ref> Launching [[satellite]]s into polar orbit requires a larger [[launch vehicle]] to launch a given payload to a given altitude than for a [[near-equatorial orbit]] at the same altitude, because it cannot take advantage of the [[Earth's rotation]]al [[velocity]]. Depending on the location of the [[Spaceport|launch site]] and the [[Orbital_inclination|inclination]] of the polar orbit, the launch vehicle may lose up to 460 m/s of [[Delta-v]], approximately 5% of the Delta-v required to attain [[Low Earth orbit]]. ==Usage== Polar orbits are used for [[Earth observation satellite|Earth-mapping]], [[reconnaissance satellite]]s, as well as for some [[weather satellite]]s.<ref>Science Focus 2nd Edition 2, pg. 297</ref> The [[Iridium satellite constellation]] uses a polar orbit to provide telecommunications services. {{anchor|nearPolarOrbit}}Near-polar orbiting satellites commonly choose a [[sun-synchronous orbit]], where each successive orbital [[pass (spaceflight)|pass]] occurs at the same local time of day. For some applications, such as [[remote sensing]], it is important that ''changes'' over time are not aliased by changes in local time. Keeping the same local time on a given pass requires that the [[frequency|time period]] of the orbit be kept as short, which requires a low orbit. However, very low orbits rapidly [[orbital decay|decay]] due to [[drag (physics)|drag]] from the atmosphere. Commonly used [[altitude]]s are between 700 and 800 km, producing an [[orbital period]] of about 100 minutes.<ref name="phy6">{{cite web |url=http://www.phy6.org/Education/wlopolar.html |title=Polar Orbiting Satellites |first=David P. |last=Stern |date=2001-11-25 |access-date=2009-01-21}}</ref> The half-orbit on the Sun side then takes only 50 minutes, during which local time of day does not vary greatly. {{anchor|precessingSV}}To retain a Sun-synchronous orbit as the [[Earth's orbit|Earth revolves]] around the Sun during the year, the orbit must [[Nodal precession|precess]] about the Earth at the same rate (which is not possible if the satellite passes directly over the pole). Because of Earth's [[equatorial bulge]], an orbit [[orbital inclination|inclined]] at a slight angle is subject to a [[torque]], which causes [[precession]]. An angle of about 8° from the pole produces the desired precession in a 100-minute orbit.<ref name="phy6" /> == Exoplanets == [[File:2M1510 (AB) b, a planet in a perpendicular orbit around two brown dwarfs (eso2508a).jpg|thumb|right|Orbit of the planet (orange orbit) around the brown dwarf binary 2M1510AB (blue orbits).]] A misalignment between host star rotation plane and orbital plane of the planet is called [[obliquity]] and is usually measured with the [[Rossiter–McLaughlin effect|Rossiter-McLaughlin effect]]. Around 10% of exoplanets have a misalignment between 80 and 125°.<ref>{{Cite journal |last1=Albrecht |first1=Simon H. |last2=Marcussen |first2=Marcus L. |last3=Winn |first3=Joshua N. |last4=Dawson |first4=Rebekah I. |last5=Knudstrup |first5=Emil |date=July 2021 |title=A Preponderance of Perpendicular Planets |journal=The Astrophysical Journal |language=en |volume=916 |issue=1 |pages=L1 |arxiv=2105.09327 |bibcode=2021ApJ...916L...1A |doi=10.3847/2041-8213/ac0f03 |doi-access=free |issn=0004-637X}}</ref> About half of these are warm [[Neptune|Neptune]] sized or super-Neptune sized planets.<ref name=":0">{{Cite journal |last1=Louden |first1=Emma M. |last2=Millholland |first2=Sarah C. |date=October 2024 |title=Polar Neptunes Are Stable to Tides |journal=The Astrophysical Journal |language=en |volume=974 |issue=2 |pages=304 |arxiv=2409.03679 |bibcode=2024ApJ...974..304L |doi=10.3847/1538-4357/ad74ff |doi-access=free |issn=0004-637X}}</ref> Examples of exoplanets with nearly polar orbits are [[GJ 3470 b|GJ 3470b]], [[TOI-858Bb]], [[WASP-178b]],<ref name=":1">{{Cite journal |last1=Czekala |first1=Ian |last2=Chiang |first2=Eugene |last3=Andrews |first3=Sean M. |last4=Jensen |first4=Eric L. N. |last5=Torres |first5=Guillermo |last6=Wilner |first6=David J. |last7=Stassun |first7=Keivan G. |last8=Macintosh |first8=Bruce |date=September 2019 |title=The Degree of Alignment between Circumbinary Disks and Their Binary Hosts |journal=The Astrophysical Journal |language=en |volume=883 |issue=1 |pages=22 |arxiv=1906.03269 |bibcode=2019ApJ...883...22C |doi=10.3847/1538-4357/ab287b |doi-access=free |issn=0004-637X}}</ref> [[HD 3167|HD 3167c+d]],<ref>{{Cite journal |last1=Dalal |first1=S. |last2=Hébrard |first2=G. |last3=Lecavelier des Étangs |first3=A. |last4=Petit |first4=A. C. |last5=Bourrier |first5=V. |last6=Laskar |first6=J. |last7=König |first7=P.-C. |last8=Correia |first8=A. C. M. |date=November 2019 |title=Nearly polar orbit of the sub-Neptune HD 3167 c. Constraints on the dynamical history of a multi-planet system |url=https://ui.adsabs.harvard.edu/abs/2019A&A...631A..28D/abstract |journal=Astronomy and Astrophysics |language=en |volume=631 |pages=A28 |arxiv=1906.11013 |bibcode=2019A&A...631A..28D |doi=10.1051/0004-6361/201935944 |issn=0004-6361}}</ref> [[TOI-640 b|TOI-640b]],<ref>{{Cite journal |last1=Knudstrup |first1=Emil |last2=Albrecht |first2=Simon H. |last3=Gandolfi |first3=Davide |last4=Marcussen |first4=Marcus L. |last5=Goffo |first5=Elisa |last6=Serrano |first6=Luisa M. |last7=Dai |first7=Fei |last8=Redfield |first8=Seth |last9=Hirano |first9=Teruyuki |last10=Csizmadia |first10=Szilárd |last11=Cochran |first11=William D. |last12=Deeg |first12=Hans J. |last13=Fridlund |first13=Malcolm |last14=Lam |first14=Kristine W. F. |last15=Livingston |first15=John H. |date=March 2023 |title=A puffy polar planet. The low density, hot Jupiter TOI-640 b is on a polar orbit |url=https://ui.adsabs.harvard.edu/abs/2023A&A...671A.164K/abstract |journal=Astronomy and Astrophysics |language=en |volume=671 |pages=A164 |arxiv=2302.01702 |bibcode=2023A&A...671A.164K |doi=10.1051/0004-6361/202245301 |issn=0004-6361}}</ref> [[MASCARA-1b|MASCARA-1 b]],<ref>{{Cite journal |last1=Hooton |first1=M. J. |last2=Hoyer |first2=S. |last3=Kitzmann |first3=D. |last4=Morris |first4=B. M. |last5=Smith |first5=A. M. S. |last6=Collier Cameron |first6=A. |last7=Futyan |first7=D. |last8=Maxted |first8=P. F. L. |last9=Queloz |first9=D. |last10=Demory |first10=B.-O. |last11=Heng |first11=K. |last12=Lendl |first12=M. |last13=Cabrera |first13=J. |last14=Csizmadia |first14=Sz |last15=Deline |first15=A. |date=February 2022 |title=Spi-OPS: Spitzer and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection |url=https://ui.adsabs.harvard.edu/abs/2022A&A...658A..75H/abstract |journal=Astronomy and Astrophysics |language=en |volume=658 |pages=A75 |arxiv=2109.05031 |bibcode=2022A&A...658A..75H |doi=10.1051/0004-6361/202141645 |issn=0004-6361}}</ref> and [[Gliese 436 b|GJ 436b]].<ref>{{Cite journal |last1=Bourrier |first1=V. |last2=Zapatero Osorio |first2=M. R. |last3=Allart |first3=R. |last4=Attia |first4=M. |last5=Cretignier |first5=M. |last6=Dumusque |first6=X. |last7=Lovis |first7=C. |last8=Adibekyan |first8=V. |last9=Borsa |first9=F. |last10=Figueira |first10=P. |last11=González Hernández |first11=J. I. |last12=Mehner |first12=A. |last13=Santos |first13=N. C. |last14=Schmidt |first14=T. |last15=Seidel |first15=J. V. |date=July 2022 |title=The polar orbit of the warm Neptune GJ 436b seen with VLT/ESPRESSO |url=https://ui.adsabs.harvard.edu/abs/2022A&A...663A.160B/abstract |journal=Astronomy and Astrophysics |language=en |volume=663 |pages=A160 |arxiv=2203.06109 |bibcode=2022A&A...663A.160B |doi=10.1051/0004-6361/202142559 |issn=0004-6361}}</ref> One explanation describes the misalignment of a [[circumbinary disk]] that forms the planets. When the central binary merges into a single star, the disk and any planets that have formed remain in a polar orbit.<ref>{{Cite journal |last1=Chen |first1=Cheng |last2=Baronett |first2=Stanley A. |last3=Nixon |first3=C. J. |last4=Martin |first4=Rebecca G. |date=September 2024 |title=On the origin of polar planets around single stars |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=533 |issue=1 |pages=L37–L42 |arxiv=2406.16169 |bibcode=2024MNRAS.533L..37C |doi=10.1093/mnrasl/slae058 |doi-access=free |issn=0035-8711}}</ref> A study has shown that circumbinary disks are aligned with binaries that have a short orbital period of less than 20 days. Circumbinary disks around binaries with an orbital period of more than 30 days showed a wide range of alignments, including polar disks.<ref name=":1" /> The other explanation describes how a Neptune-sized planet might get into a polar orbit at the end of the planet formation. This happens due to a [[resonance]] with a [[protoplanetary disk]] in a system with an additional outer planet.<ref>{{Cite journal |last1=Petrovich |first1=Cristobal |last2=Muñoz |first2=Diego J. |last3=Kratter |first3=Kaitlin M. |last4=Malhotra |first4=Renu |date=October 2020 |title=A Disk-driven Resonance as the Origin of High Inclinations of Close-in Planets |journal=The Astrophysical Journal |language=en |volume=902 |issue=1 |pages=L5 |arxiv=2008.08587 |bibcode=2020ApJ...902L...5P |doi=10.3847/2041-8213/abb952 |doi-access=free |issn=0004-637X}}</ref><ref name=":0" /> In April 2025 astronomers using [[European Southern Observatory|ESO]]'s UVES instrument on the [[Very Large Telescope]] announced strong evidence for a [[circumbinary planet]] orbiting the brown dwarf pair [[2M1510]]AB. The planet is called 2M1510(AB)b, or just 2M1510b. The orbit of the planet is unusual as it is a [[polar orbit]] around a binary system, the first such case that was discovered. The discovery was made with the help of [[radial velocity]] measurements that showed [[Retrograde and prograde motion|retrograde]] [[apsidal precession]] of the brown dwarf pair, which could not be explained by the outer companion. ==See also== *[[List of orbits]] *[[Molniya orbit]] *[[Tundra orbit]] *[[Vandenberg Air Force Base]], a major United States launch location for polar orbits ==References== {{reflist}} ==External links== * [https://web.archive.org/web/20120204054322/http://www.braeunig.us/space/orbmech.htm Orbital Mechanics] (Rocket and Space Technology) {{orbits}} {{DEFAULTSORT:Polar Orbit}} [[Category:Astrodynamics]] [[Category:Earth orbits]] [[Category:Articles containing video clips]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Anchor
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Orbits
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)