Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polyakov action
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|2D conformal field theory used in string theory}} {{String theory}} In [[physics]], the '''Polyakov action''' is an [[action (physics)|action]] of the [[two-dimensional conformal field theory]] describing the [[worldsheet]] of a string in [[string theory]]. It was introduced by [[Stanley Deser]] and [[Bruno Zumino]] and independently by [[Lars Brink|L. Brink]], [[Paolo Di Vecchia|P. Di Vecchia]] and P. S. Howe in 1976,<ref>{{cite journal |last1=Deser |first1=S. |authorlink1=Stanley Deser |last2=Zumino |first2=B. |authorlink2=Bruno Zumino |date=1976 |title=A Complete Action for the Spinning String |url=https://cds.cern.ch/record/201648|journal=Phys. Lett. B |volume=65 |issue= 4|pages=369–373 |doi=10.1016/0370-2693(76)90245-8}}</ref><ref>{{cite journal |last1=Brink |first1=L. |authorlink1=Lars Brink |last2=Di Vecchia |first2=P. |authorlink2=Paolo Di Vecchia |last3=Howe |first3=P. |date=1976 |title=A locally supersymmetric and reparametrization invariant action for the spinning string |url=https://dx.doi.org/10.1016/0370-2693%2876%2990445-7 |journal=Physics Letters B |volume=65 |issue=5 |pages=471–474 |doi=10.1016/0370-2693(76)90445-7|url-access=subscription }}</ref> and has become associated with [[Alexander Markovich Polyakov|Alexander Polyakov]] after he made use of it in quantizing the string in 1981.<ref>{{cite journal |last1=Polyakov |first1=A. M. |authorlink1=Alexander Markovich Polyakov |date=1981 |title=Quantum geometry of bosonic strings |url=https://dx.doi.org/10.1016/0370-2693%2881%2990743-7 |journal=Physics Letters B |volume=103 |issue=3 |pages=207–210 |doi=10.1016/0370-2693(81)90743-7|url-access=subscription }}</ref> The action reads: : <math>\mathcal{S} = \frac{T}{2} \int\mathrm{d}^2\sigma\, \sqrt{-h}\,h^{ab} g_{\mu\nu}(X) \partial_a X^\mu(\sigma) \partial_b X^\nu(\sigma),</math> where <math>T</math> is the string [[Tension (mechanics)|tension]], <math>g_{\mu\nu}</math> is the metric of the [[target manifold]], <math>h_{ab}</math> is the worldsheet metric, <math>h^{ab}</math> its inverse, and <math>h</math> is the determinant of <math>h_{ab}</math>. The [[metric signature]] is chosen such that timelike directions are + and the spacelike directions are −. The spacelike worldsheet coordinate is called <math>\sigma</math>, whereas the timelike worldsheet coordinate is called <math>\tau</math>. This is also known as the [[nonlinear sigma model]].<ref name="Frie80">{{cite journal |last=Friedan |first=D. |author-link=Daniel Friedan |title=Nonlinear Models in 2+ε Dimensions |journal=[[Physical Review Letters]] |volume=45 |pages=1057–1060 |date=1980 |issue=13 |url=http://www.physics.rutgers.edu/~friedan/papers/PRL_45_1980_1057.pdf |doi=10.1103/PhysRevLett.45.1057 |bibcode=1980PhRvL..45.1057F}}</ref> The Polyakov action must be supplemented by the [[Liouville field theory|Liouville action]] to describe string fluctuations. == Global symmetries == N.B.: Here, a symmetry is said to be local or global from the two dimensional theory (on the worldsheet) point of view. For example, Lorentz transformations, that are local symmetries of the space-time, are global symmetries of the theory on the worldsheet. The action is [[Invariant (physics)|invariant]] under spacetime [[Translation (geometry)|translations]] and [[infinitesimal]] [[Lorentz transformation]]s{{ordered list | list-style-type=lower-roman | <math> X^\alpha \to X^\alpha + b^\alpha, </math> | <math> X^\alpha \to X^\alpha + \omega^\alpha_{\ \beta} X^\beta, </math> }} where <math> \omega_{\mu \nu} = -\omega_{\nu \mu} </math>, and <math> b^\alpha </math> is a constant. This forms the [[Poincaré group|Poincaré symmetry]] of the target manifold. The invariance under (i) follows since the action <math> \mathcal{S} </math> depends only on the first derivative of <math> X^\alpha </math>. The proof of the invariance under (ii) is as follows: : <math>\begin{align} \mathcal{S}' &= {T \over 2}\int \mathrm{d}^2\sigma\, \sqrt{-h}\, h^{ab} g_{\mu \nu} \partial_a \left( X^\mu + \omega^\mu_{\ \delta} X^\delta \right) \partial_b \left( X^\nu + \omega^\nu_{\ \delta} X^\delta \right) \\ &= \mathcal{S} + {T \over 2}\int \mathrm{d}^2\sigma\, \sqrt{-h}\, h^{ab} \left( \omega_{\mu \delta} \partial_a X^\mu \partial_b X^\delta + \omega_{\nu \delta} \partial_a X^\delta \partial_b X^\nu \right) + \operatorname{O}\left(\omega^2\right) \\ &= \mathcal{S} + {T \over 2}\int \mathrm{d}^2\sigma\, \sqrt{-h}\, h^{ab} \left( \omega_{\mu \delta} + \omega_{\delta \mu } \right) \partial_a X^\mu \partial_b X^\delta + \operatorname{O}\left(\omega^2\right) \\ &= \mathcal{S} + \operatorname{O}\left(\omega^2\right). \end{align}</math> == Local symmetries == The action is [[invariant (physics)|invariant]] under worldsheet [[diffeomorphism]]s (or coordinates transformations) and [[Weyl transformation]]s. === Diffeomorphisms === Assume the following transformation: : <math> \sigma^\alpha \rightarrow \tilde{\sigma}^\alpha\left(\sigma,\tau \right). </math> It transforms the [[metric tensor]] in the following way: : <math> h^{ab}(\sigma) \rightarrow \tilde{h}^{ab} = h^{cd} (\tilde{\sigma})\frac{\partial {\sigma}^a}{\partial \tilde{\sigma}^c} \frac{\partial {\sigma}^b}{\partial \tilde{\sigma}^d}. </math> One can see that: : <math> \tilde{h}^{ab} \frac{\partial}{\partial {\sigma}^a} X^\mu(\tilde{\sigma}) \frac{\partial}{\partial \sigma^b} X^\nu(\tilde{\sigma}) = h^{cd} \left(\tilde{\sigma}\right)\frac{\partial \sigma^a}{\partial \tilde{\sigma}^c} \frac{\partial \sigma^b}{\partial \tilde{\sigma}^d} \frac{\partial}{\partial \sigma^a} X^\mu(\tilde{\sigma})\frac{\partial}{\partial {\sigma}^b} X^\nu(\tilde{\sigma}) = h^{ab}\left(\tilde{\sigma}\right)\frac{\partial}{\partial \tilde{\sigma}^a}X^\mu(\tilde{\sigma}) \frac{\partial}{\partial \tilde{\sigma}^b} X^\nu(\tilde{\sigma}). </math> One knows that the [[Jacobian matrix and determinant|Jacobian]] of this transformation is given by : <math> \mathrm{J} = \operatorname{det} \left( \frac{\partial \tilde{\sigma}^\alpha}{\partial \sigma^\beta} \right), </math> which leads to : <math>\begin{align} \mathrm{d}^2 \tilde{\sigma} &= \mathrm{J} \mathrm{d}^2 \sigma \\ h &= \operatorname{det} \left( h_{ab} \right) \\ \Rightarrow \tilde{h} &= \mathrm{J}^2 h, \end{align}</math> and one sees that : <math> \sqrt{-\tilde{h}} \mathrm{d}^2 {\sigma} = \sqrt{-h \left(\tilde{\sigma}\right)} \mathrm{d}^2 \tilde{\sigma}. </math> Summing up this transformation and relabeling <math> \tilde{\sigma} = \sigma </math>, we see that the action is invariant. === Weyl transformation === Assume the [[Weyl transformation]]: : <math> h_{ab} \to \tilde{h}_{ab} = \Lambda(\sigma) h_{ab}, </math> then : <math>\begin{align} \tilde{h}^{ab} &= \Lambda^{-1}(\sigma) h^{ab}, \\ \operatorname{det} \left( \tilde{h}_{ab} \right) &= \Lambda^2(\sigma) \operatorname{det} (h_{ab}). \end{align}</math> And finally: : {| | <math> \mathcal{S}', </math> | <math> = {T \over 2}\int \mathrm{d}^2 \sigma \sqrt{-\tilde{h}} \tilde{h}^{ab} g_{\mu\nu} (X) \partial_a X^\mu (\sigma) \partial_b X^\nu(\sigma), </math> |- | |<math> = {T \over 2}\int \mathrm{d}^2 \sigma \sqrt{-h} \left( \Lambda \Lambda^{-1} \right) h^{ab} g_{\mu \nu} (X) \partial_a X^\mu (\sigma) \partial_b X^\nu(\sigma) = \mathcal{S}. </math> |} And one can see that the action is invariant under [[Weyl transformation]]. If we consider ''n''-dimensional (spatially) extended objects whose action is proportional to their worldsheet area/hyperarea, unless ''n'' = 1, the corresponding Polyakov action would contain another term breaking Weyl symmetry. One can define the [[stress–energy tensor]]: : <math> T^{ab} = \frac{-2}{\sqrt{-h}} \frac{\delta S}{\delta h_{ab}}. </math> Let's define: : <math> \hat{h}_{ab} = \exp\left(\phi(\sigma)\right) h_{ab}. </math> Because of [[Weyl symmetry]], the action does not depend on <math> \phi </math>: : <math> \frac{\delta S}{\delta \phi} = \frac{\delta S}{\delta \hat{h}_{ab}} \frac{\delta \hat{h}_{ab}}{\delta \phi} = -\frac12 \sqrt{-h} \,T_{ab}\, e^{\phi}\, h^{ab} = -\frac12 \sqrt{-h} \,T^a_{\ a} \,e^{\phi} = 0 \Rightarrow T^{a}_{\ a} = 0, </math> where we've used the [[functional derivative]] chain rule. == Relation with Nambu–Goto action == Writing the [[Euler–Lagrange equation]] for the [[metric tensor]] <math> h^{ab} </math> one obtains that : <math> \frac{\delta S}{\delta h^{ab}} = T_{ab} = 0. </math> Knowing also that: : <math> \delta \sqrt{-h} = -\frac12 \sqrt{-h} h_{ab} \delta h^{ab}. </math> One can write the variational derivative of the action: : <math> \frac{\delta S}{\delta h^{ab}} = \frac{T}{2} \sqrt{-h} \left( G_{ab} - \frac12 h_{ab} h^{cd} G_{cd} \right), </math> where <math> G_{ab} = g_{\mu \nu} \partial_a X^\mu \partial_b X^\nu </math>, which leads to : <math>\begin{align} T_{ab} &= T \left( G_{ab} - \frac12 h_{ab} h^{cd} G_{cd} \right) = 0, \\ G_{ab} &= \frac12 h_{ab} h^{cd} G_{cd}, \\ G &= \operatorname{det} \left( G_{ab} \right) = \frac14 h \left( h^{cd} G_{cd} \right)^2. \end{align}</math> If the auxiliary [[worldsheet]] [[metric tensor]] <math>\sqrt{-h}</math> is calculated from the equations of motion: : <math> \sqrt{-h} = \frac{2 \sqrt{-G}}{h^{cd} G_{cd}} </math> and substituted back to the action, it becomes the [[Nambu–Goto action]]: : <math> S = {T \over 2}\int \mathrm{d}^2 \sigma \sqrt{-h} h^{ab} G_{ab} = {T \over 2}\int \mathrm{d}^2 \sigma \frac{2 \sqrt{-G}}{h^{cd} G_{cd}} h^{ab} G_{ab} = T \int \mathrm{d}^2 \sigma \sqrt{-G}.</math> However, the Polyakov action is more easily [[quantization (physics)|quantized]] because it is [[linear]]. == Equations of motion == Using [[diffeomorphism]]s and [[Weyl transformation]], with a [[Minkowski space|Minkowskian target space]], one can make the physically insignificant transformation <math>\sqrt{-h} h^{ab} \rightarrow \eta^{ab}</math>, thus writing the action in the ''conformal gauge'': : <math> \mathcal{S} = {T \over 2}\int \mathrm{d}^2 \sigma \sqrt{-\eta} \eta^{ab} g_{\mu \nu} (X) \partial_a X^\mu (\sigma) \partial_b X^\nu(\sigma) = {T \over 2}\int \mathrm{d}^2 \sigma \left( \dot{X}^2 - X'^2 \right), </math> where <math> \eta_{ab} = \left( \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) </math>. Keeping in mind that <math> T_{ab} = 0 </math> one can derive the constraints: : <math>\begin{align} T_{01} &= T_{10} = \dot{X} X' = 0, \\ T_{00} &= T_{11} = \frac12 \left( \dot{X}^2 + X'^2 \right) = 0. \end{align}</math> Substituting <math> X^\mu \to X^\mu + \delta X^\mu </math>, one obtains : <math>\begin{align} \delta \mathcal{S} &= T \int \mathrm{d}^2 \sigma \eta^{ab} \partial_a X^\mu \partial_b \delta X_\mu \\ &= -T \int \mathrm{d}^2 \sigma \eta^{ab} \partial_a \partial_b X^\mu \delta X_\mu + \left( T \int d \tau X' \delta X \right)_{\sigma=\pi} - \left( T \int d \tau X' \delta X \right)_{\sigma=0} \\ &= 0. \end{align}</math> And consequently : <math> \square X^\mu = \eta^{ab} \partial_a \partial_b X^\mu = 0. </math> The boundary conditions to satisfy the second part of the variation of the action are as follows. * Closed strings: *: [[Periodic boundary conditions]]: <math> X^\mu(\tau, \sigma + \pi) = X^\mu(\tau, \sigma). </math> * Open strings:{{ordered list | list-style-type=lower-roman | [[Neumann boundary conditions]]: <math> \partial_\sigma X^\mu (\tau, 0) = 0, \partial_\sigma X^\mu (\tau, \pi) = 0. </math> | [[Dirichlet boundary conditions]]: <math> X^\mu(\tau, 0) = b^\mu, X^\mu(\tau, \pi) = b'^\mu. </math> }} Working in [[light-cone coordinates]] <math>\xi^\pm = \tau \pm \sigma</math>, we can rewrite the equations of motion as : <math>\begin{align} \partial_+ \partial_- X^\mu &= 0, \\ (\partial_+ X)^2 = (\partial_- X)^2 &= 0. \end{align}</math> Thus, the solution can be written as <math>X^\mu = X^\mu_+ (\xi^+) + X^\mu_- (\xi^-)</math>, and the stress-energy tensor is now diagonal. By [[Fourier series|Fourier-expanding]] the solution and imposing [[canonical commutation relations]] on the coefficients, applying the second equation of motion motivates the definition of the Virasoro operators and lead to the [[N = 2 superconformal algebra#Free field construction|Virasoro constraints]] that vanish when acting on physical states. == See also == * [[D-brane]] * [[Einstein–Hilbert action]] == References == {{Reflist}} == Further reading == * Polchinski (Nov, 1994). ''What is String Theory'', NSF-ITP-94-97, 153 pp., [[arXiv:hep-th/9411028v1]]. * Ooguri, Yin (Feb, 1997). ''TASI Lectures on Perturbative String Theories'', UCB-PTH-96/64, LBNL-39774, 80 pp., [[arXiv:hep-th/9612254v3]]. {{Quantum field theories}} {{String theory topics}} {{DEFAULTSORT:Polyakov Action}} [[Category:Conformal field theory]] [[Category:String theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite journal
(
edit
)
Template:Ordered list
(
edit
)
Template:Quantum field theories
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:String theory
(
edit
)
Template:String theory topics
(
edit
)