Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polydivisible number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|A number whose first n digits is a multiple of n}} {{refimprove|date=October 2018}} In [[mathematics]] a '''polydivisible number''' (or '''magic number''') is a [[natural number|number]] in a given [[number base]] with [[numerical digit|digits]] ''abcde...'' that has the following properties:<ref name="moloy_de">{{Citation|url=https://www.researchgate.net/publication/317116429|title=MATH'S BELIEVE IT OR NOT|last=De|first=Moloy}}</ref> # Its first digit ''a'' is not 0. # The number formed by its first two digits ''ab'' is a multiple of 2. # The number formed by its first three digits ''abc'' is a multiple of 3. # The number formed by its first four digits ''abcd'' is a multiple of 4. # etc. ==Definition== Let <math>n</math> be a positive integer, and let <math>k = \lfloor \log_{b}{n} \rfloor + 1</math> be the number of digits in ''n'' written in base ''b''. The number ''n'' is a '''polydivisible number''' if for all <math>1 \leq i \leq k</math>, : <math>\left\lfloor\frac{n}{b^{k - i}}\right\rfloor \equiv 0 \pmod i</math>. ; Example For example, 10801 is a seven-digit polydivisible number in [[base 4]], as : <math>\left\lfloor\frac{10801}{4^{7 - 1}}\right\rfloor = \left\lfloor\frac{10801}{4096}\right\rfloor = 2 \equiv 0 \pmod 1,</math> : <math>\left\lfloor\frac{10801}{4^{7 - 2}}\right\rfloor = \left\lfloor\frac{10801}{1024}\right\rfloor = 10 \equiv 0 \pmod 2,</math> : <math>\left\lfloor\frac{10801}{4^{7 - 3}}\right\rfloor = \left\lfloor\frac{10801}{256}\right\rfloor = 42 \equiv 0 \pmod 3,</math> : <math>\left\lfloor\frac{10801}{4^{7 - 4}}\right\rfloor = \left\lfloor\frac{10801}{64}\right\rfloor = 168 \equiv 0 \pmod 4,</math> : <math>\left\lfloor\frac{10801}{4^{7 - 5}}\right\rfloor = \left\lfloor\frac{10801}{16}\right\rfloor = 675 \equiv 0 \pmod 5,</math> : <math>\left\lfloor\frac{10801}{4^{7 - 6}}\right\rfloor = \left\lfloor\frac{10801}{4}\right\rfloor = 2700 \equiv 0 \pmod 6,</math> : <math>\left\lfloor\frac{10801}{4^{7 - 7}}\right\rfloor = \left\lfloor\frac{10801}{1}\right\rfloor = 10801 \equiv 0 \pmod 7.</math> ==Enumeration== For any given base <math>b</math>, there are only a finite number of polydivisible numbers. ===Maximum polydivisible number=== The following table lists maximum polydivisible numbers for some bases ''b'', where {{math|AβZ}} represent digit values 10 to 35. {| class="wikitable" |- ! Base <math>b</math> ! Maximum polydivisible number ({{OEIS2C|A109032}}) ! Number of base-''b'' digits ({{OEIS2C|A109783}}) |- | [[base 2|2]] || {{math|10<sub>2</sub>}} || 2 |- | [[base 3|3]] || {{math|20 0220<sub>3</sub>}} || 6 |- | [[base 4|4]] || {{math|222 0301<sub>4</sub>}} || 7 |- | [[base 5|5]] || {{math|40220 42200<sub>5</sub>}} || 10 |- | [[base 10|10]] || {{math|36085 28850 36840 07860 36725}}<ref name="Parker" /><ref name="Wells">{{Citation|last=Wells|first=David|title=The Penguin Dictionary of Curious and Interesting Numbers|page=197|publisher=Penguin Books|year=1986|isbn=9780140261493|via=Google Books|url=https://books.google.com/books?id=kQRPkTkk_VIC&pg=PA197}}</ref><ref name="Lines">{{Citation|last=Lines|first=Malcolm|title=A Number for your Thoughts|chapter=How Do These Series End?|page=90|publisher=Taylor and Francis Group|year=1986|isbn=9780852744956|chapter-url=https://books.google.com/books?id=Am9og6q_ny4C&pg=PA90}}</ref> || 25 |- | [[base 12|12]] || {{math|6068 903468 50BA68 00B036 206464<sub>12</sub>}} || 28 |- |} ===Estimate for ''F<sub>b</sub>''(''n'') and Σ(''b'')=== [[File:Graph of polydivisible number vectorial.svg|right|thumb|400px|Graph of number of <math>n</math>-digit polydivisible numbers in base 10 <math>F_{10}(n)</math> vs estimate of <math>F_{10}(n)</math>]] Let <math>n</math> be the number of digits. The function <math>F_b(n)</math> determines the number of polydivisible numbers that has <math>n</math> digits in base <math>b</math>, and the function <math>\Sigma(b)</math> is the total number of polydivisible numbers in base <math>b</math>. If <math>k</math> is a polydivisible number in base <math>b</math> with <math>n - 1</math> digits, then it can be extended to create a polydivisible number with <math>n</math> digits if there is a number between <math>bk</math> and <math>b(k + 1) - 1</math> that is divisible by <math>n</math>. If <math>n</math> is less or equal to <math>b</math>, then it is always possible to extend an <math>n - 1</math> digit polydivisible number to an <math>n</math>-digit polydivisible number in this way, and indeed there may be more than one possible extension. If <math>n</math> is greater than <math>b</math>, it is not always possible to extend a polydivisible number in this way, and as <math>n</math> becomes larger, the chances of being able to extend a given polydivisible number become smaller. On average, each polydivisible number with <math>n - 1</math> digits can be extended to a polydivisible number with <math>n</math> digits in <math>\frac{b}{n}</math> different ways. This leads to the following estimate for <math>F_{b}(n)</math>: :<math>F_b(n) \approx (b - 1)\frac{b^{n-1}}{n!}.</math> Summing over all values of n, this estimate suggests that the total number of polydivisible numbers will be approximately :<math>\Sigma(b) \approx \frac{b - 1}{b}(e^{b}-1)</math> {| class="wikitable" |- ! Base <math>b</math> ! <math>\Sigma(b)</math> ! Est. of <math>\Sigma(b)</math> ! Percent Error |- | [[base 2|2]] || 2 || <math>\frac{e^{2} - 1}{2} \approx 3.1945</math> || 59.7% |- | [[base 3|3]] || 15 || <math>\frac{2}{3}(e^{3} - 1) \approx 12.725</math> || -15.1% |- | [[base 4|4]] || 37 || <math>\frac{3}{4}(e^{4} - 1) \approx 40.199</math> || 8.64% |- | [[base 5|5]] || 127 || <math>\frac{4}{5}(e^{5} - 1) \approx 117.93</math> || β7.14% |- | [[base 10|10]] || 20456<ref name="Parker" /> || <math>\frac{9}{10}(e^{10} - 1) \approx 19823</math> || -3.09% |- |} ==Specific bases== All numbers are represented in base <math>b</math>, using AβZ to represent digit values 10 to 35. ===Base 2=== {| class="wikitable" |- ! Length ''n'' ! F<sub>2</sub>(''n'') ! Est. of F<sub>2</sub>(''n'') ! Polydivisible numbers |- | 1 || 1 || 1 || 1 |- | 2 || 1 || 1 || 10 |- |} ===Base 3=== {| class="wikitable" |- ! Length ''n'' ! F<sub>3</sub>(''n'') ! Est. of F<sub>3</sub>(''n'') ! Polydivisible numbers |- | 1 || 2 || 2 || 1, 2 |- | 2 || 3 || 3 || 11, 20, 22 |- | 3 || 3 || 3 || 110, 200, 220 |- | 4 || 3 || 2 || 1100, 2002, 2200 |- | 5 || 2 || 1 || 11002, 20022 |- | 6 || 2 || 1 || 110020, 200220 |- | 7 || 0 || 0 || <math>\varnothing</math> |- |} ===Base 4=== {| class="wikitable" |- ! Length ''n'' ! F<sub>4</sub>(''n'') ! Est. of F<sub>4</sub>(''n'') ! Polydivisible numbers |- | 1 || 3 || 3 || 1, 2, 3 |- | 2 || 6 || 6 || 10, 12, 20, 22, 30, 32 |- | 3 || 8 || 8 || 102, 120, 123, 201, 222, 300, 303, 321 |- | 4 || 8 || 8 || 1020, 1200, 1230, 2010, 2220, 3000, 3030, 3210 |- | 5 || 7 || 6 || 10202, 12001, 12303, 20102, 22203, 30002, 32103 |- | 6 || 4 || 4 || 120012, 123030, 222030, 321030 |- | 7 || 1 || 2 || 2220301 |- | 8 || 0 || 1 || <math>\varnothing</math> |- |} ===Base 5=== The polydivisible numbers in base 5 are :1, 2, 3, 4, 11, 13, 20, 22, 24, 31, 33, 40, 42, 44, 110, 113, 132, 201, 204, 220, 223, 242, 311, 314, 330, 333, 402, 421, 424, 440, 443, 1102, 1133, 1322, 2011, 2042, 2200, 2204, 2231, 2420, 2424, 3113, 3140, 3144, 3302, 3333, 4022, 4211, 4242, 4400, 4404, 4431, 11020, 11330, 13220, 20110, 20420, 22000, 22040, 22310, 24200, 24240, 31130, 31400, 31440, 33020, 33330, 40220, 42110, 42420, 44000, 44040, 44310, 110204, 113300, 132204, 201102, 204204, 220000, 220402, 223102, 242000, 242402, 311300, 314000, 314402, 330204, 333300, 402204, 421102, 424204, 440000, 440402, 443102, 1133000, 1322043, 2011021, 2042040, 2204020, 2420003, 2424024, 3113002, 3140000, 3144021, 4022042, 4211020, 4431024, 11330000, 13220431, 20110211, 20420404, 24200031, 31400004, 31440211, 40220422, 42110202, 44310242, 132204314, 201102110, 242000311, 314000044, 402204220, 443102421, 1322043140, 2011021100, 3140000440, 4022042200 The smallest base 5 polydivisible numbers with ''n'' digits are :1, 11, 110, 1102, 11020, 110204, 1133000, 11330000, 132204314, 1322043140, none... The largest base 5 polydivisible numbers with ''n'' digits are :4, 44, 443, 4431, 44310, 443102, 4431024, 44310242, 443102421, 4022042200, none... The number of base 5 polydivisible numbers with ''n'' digits are :4, 10, 17, 21, 21, 21, 13, 10, 6, 4, 0, 0, 0... {| class="wikitable" |- ! Length ''n'' ! F<sub>5</sub>(''n'') ! Est. of F<sub>5</sub>(''n'') |- | 1 || 4 || 4 |- | 2 || 10 || 10 |- | 3 || 17 || 17 |- | 4 || 21 || 21 |- | 5 || 21 || 21 |- | 6 || 21 || 17 |- | 7 || 13 || 12 |- | 8 || 10 || 8 |- | 9 || 6 || 4 |- | 10 || 4 || 2 |- |} ===Base 10=== The polydivisible numbers in base 10 are :1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 102, 105, 108, 120, 123, 126, 129, 141, 144, 147, 162, 165, 168, 180, 183, 186, 189, 201, 204, 207, 222, 225, 228, 243, 246, 249, 261, 264, 267, 282, 285, 288... {{OEIS|id=A144688}} The smallest base 10 polydivisible numbers with ''n'' digits are :1, 10, 102, 1020, 10200, 102000, 1020005, 10200056, 102000564, 1020005640, 10200056405, 102006162060, 1020061620604, 10200616206046, 102006162060465, 1020061620604656, 10200616206046568, 108054801036000018, 1080548010360000180, 10805480103600001800, ... {{OEIS|id=A214437}} The largest base 10 polydivisible numbers with ''n'' digits are :9, 98, 987, 9876, 98765, 987654, 9876545, 98765456, 987654564, 9876545640, 98765456405, 987606963096, 9876069630960, 98760696309604, 987606963096045, 9876062430364208, 98485872309636009, 984450645096105672, 9812523240364656789, 96685896604836004260, ... {{OEIS|id=A225608}} The number of base 10 polydivisible numbers with ''n'' digits are :9, 45, 150, 375, 750, 1200, 1713, 2227, 2492, 2492, 2225, 2041, 1575, 1132, 770, 571, 335, 180, 90, 44, 18, 12, 6, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... {{OEIS|id=A143671}} {| class="wikitable" style="float:left; margin-right:1em" |- ! Length ''n'' ! F<sub>10</sub>(''n'')<ref name="A143671">{{OEIS|id=A143671}}</ref> ! Est. of F<sub>10</sub>(''n'') |- | 1 | 9 | 9 |- | 2 | 45 | 45 |- | 3 | 150 | 150 |- | 4 | 375 | 375 |- | 5 | 750 | 750 |- | 6 | 1200 | 1250 |- | 7 | 1713 | 1786 |- | 8 | 2227 | 2232 |- | 9 | 2492 | 2480 |- | 10 | 2492 | 2480 |- | 11 | 2225 | 2255 |- | 12 | 2041 | 1879 |- | 13 | 1575 | 1445 |- | 14 | 1132 | 1032 |- | 15 | 770 | 688 |- | 16 | 571 | 430 |- | 17 | 335 | 253 |- | 18 | 180 | 141 |- | 19 | 90 | 74 |- | 20 | 44 | 37 |- | 21 | 18 | 17 |- | 22 | 12 | 8 |- | 23 | 6 | 3 |- | 24 | 3 | 1 |- | 25 | 1 | 1 |}{{clear left}} ==Programming example== The example below searches for polydivisible numbers in [[Python (programming language)|Python]]. <syntaxhighlight lang="python"> def find_polydivisible(base: int) -> list[int]: """Find polydivisible number.""" numbers = [] previous = [i for i in range(1, base)] new = [] digits = 2 while not previous == []: numbers.append(previous) for n in previous: for j in range(0, base): number = n * base + j if number % digits == 0: new.append(number) previous = new new = [] digits = digits + 1 return numbers </syntaxhighlight> ==Related problems== Polydivisible numbers represent a generalization of the following well-known<ref name="Parker">{{Citation|last=Parker|first=Matt|title=Things to Make and Do in the Fourth Dimension|chapter=Can you digit?|pages=7β8|year=2014|publisher=Particular Books|isbn=9780374275655|via=Google Books|chapter-url=https://books.google.com/books?id=veIxBQAAQBAJ&pg=PA8}}</ref> problem in [[recreational mathematics]]: : ''Arrange the digits 1 to 9 in order so that the first two digits form a multiple of 2, the first three digits form a multiple of 3, the first four digits form a multiple of 4 etc. and finally the entire number is a multiple of 9.'' The solution to the problem is a nine-digit polydivisible number with the additional condition that it contains the digits 1 to 9 exactly once each. There are 2,492 nine-digit polydivisible numbers, but the only one that satisfies the additional condition is :'''381 654 729'''<ref name="Lanier">{{Citation|url=http://jwilson.coe.uga.edu/emt725/Class/Lanier/Nine.Digit/nine.html|first=Susie|last=Lanier|title=Nine Digit Number}}</ref> Other problems involving polydivisible numbers include: * Finding polydivisible numbers with additional restrictions on the digits - for example, the longest polydivisible number that only uses even digits is :'''48 000 688 208 466 084 040''' * Finding [[palindromic number|palindromic]] polydivisible numbers - for example, the longest palindromic polydivisible number is :'''30 000 600 003''' * A common, trivial extension of the aforementioned example is to arrange the digits 0 to 9 to make a 10 digit number in the same way, the result is 3816547290. This is a [[pandigital]] polydivisible number. ==References== {{reflist}} ==External links== * [https://www.youtube.com/watch?v=gaVMrqzb91w YouTube - a pandigital number that is also polydivisible] {{Classes of natural numbers}} {{Divisor classes}} [[Category:Articles with example Python (programming language) code]] [[Category:Base-dependent integer sequences]] [[Category:Modular arithmetic]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:Clear left
(
edit
)
Template:Divisor classes
(
edit
)
Template:Math
(
edit
)
Template:OEIS
(
edit
)
Template:OEIS2C
(
edit
)
Template:Refimprove
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)