Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polygamma function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Meromorphic function}} {{For|Barnes's gamma function|multiple gamma function}} {{one source|date=August 2021}}{{Use American English|date = March 2019}} [[File:Mplwp polygamma03.svg|thumb|300px|Graphs of the polygamma functions {{math|''ψ''}}, {{math|''ψ''<sup>(1)</sup>}}, {{math|''ψ''<sup>(2)</sup>}} and {{math|''ψ''<sup>(3)</sup>}} of real arguments]] [[File:Plot of polygamma function in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1.svg| thumb | alt=Plot of the [[digamma function]], the first polygamma function, in the complex plane, with colors showing one cycle of phase shift around each pole and zero | Plot of the [[digamma function]], the first polygamma function, in the complex plane from −2−2i to 2+2i with colors created by Mathematica's function ComplexPlot3D showing one cycle of phase shift around each pole and the zero]] In [[mathematics]], the '''polygamma function of order {{mvar|m}}''' is a [[meromorphic function]] on the [[complex numbers]] <math>\mathbb{C}</math> defined as the {{math|(''m'' + 1)}}th [[derivative of the logarithm]] of the [[gamma function]]: :<math>\psi^{(m)}(z) := \frac{\mathrm{d}^m}{\mathrm{d}z^m} \psi(z) = \frac{\mathrm{d}^{m+1}}{\mathrm{d}z^{m+1}} \ln\Gamma(z).</math> Thus :<math>\psi^{(0)}(z) = \psi(z) = \frac{\Gamma'(z)}{\Gamma(z)}</math> holds where {{math|''ψ''(''z'')}} is the [[digamma function]] and {{math|Γ(''z'')}} is the [[gamma function]]. They are [[Holomorphic function|holomorphic]] on <math>\mathbb{C} \backslash\mathbb{Z}_{\le0}</math>. At all the nonpositive integers these polygamma functions have a [[isolated singularity|pole]] of order {{math|''m'' + 1}}. The function {{math|''ψ''<sup>(1)</sup>(''z'')}} is sometimes called the [[trigamma function]]. {| style="text-align:center" |+ '''The logarithm of the gamma function and the first few polygamma functions in the complex plane''' |[[Image:Complex LogGamma.jpg|1000x140px|none]] |[[Image:Complex Polygamma 0.jpg|1000x140px|none]] |[[Image:Complex Polygamma 1.jpg|1000x140px|none]] |- |{{math|ln Γ(''z'')}} |{{math|''ψ''<sup>(0)</sup>(''z'')}} |{{math|''ψ''<sup>(1)</sup>(''z'')}} |- |[[Image:Complex Polygamma 2.jpg|1000x140px|none]] |[[Image:Complex Polygamma 3.jpg|1000x140px|none]] |[[Image:Complex Polygamma 4.jpg|1000x140px|none]] |- |{{math|''ψ''<sup>(2)</sup>(''z'')}} |{{math|''ψ''<sup>(3)</sup>(''z'')}} |{{math|''ψ''<sup>(4)</sup>(''z'')}} |} ==Integral representation== {{see also|Digamma function#Integral representations}} When {{math|''m'' > 0}} and {{math|Re ''z'' > 0}}, the polygamma function equals :<math>\begin{align} \psi^{(m)}(z) &= (-1)^{m+1}\int_0^\infty \frac{t^m e^{-zt}}{1-e^{-t}}\,\mathrm{d}t \\ &= -\int_0^1 \frac{t^{z-1}}{1-t}(\ln t)^m\,\mathrm{d}t\\ &= (-1)^{m+1}m!\zeta(m+1,z) \end{align}</math> where <math>\zeta(s,q)</math> is the [[Hurwitz zeta function]]. This expresses the polygamma function as the [[Laplace transform]] of {{math|{{sfrac|(−1)<sup>''m''+1</sup> ''t<sup>m</sup>''|1 − ''e''<sup>−''t''</sup>}}}}. It follows from [[Bernstein's theorem on monotone functions]] that, for {{math|''m'' > 0}} and {{math|''x''}} real and non-negative, {{math|(−1)<sup>''m''+1</sup> ''ψ''<sup>(''m'')</sup>(''x'')}} is a completely monotone function. Setting {{math|''m'' {{=}} 0}} in the above formula does not give an integral representation of the digamma function. The digamma function has an integral representation, due to Gauss, which is similar to the {{math|''m'' {{=}} 0}} case above but which has an extra term {{math|{{sfrac|''e''<sup>−''t''</sup>|''t''}}}}. ==Recurrence relation== It satisfies the [[recurrence relation]] :<math>\psi^{(m)}(z+1)= \psi^{(m)}(z) + \frac{(-1)^m\,m!}{z^{m+1}}</math> which – considered for positive integer argument – leads to a presentation of the sum of reciprocals of the powers of the natural numbers: :<math>\frac{\psi^{(m)}(n)}{(-1)^{m+1}\,m!} = \zeta(1+m) - \sum_{k=1}^{n-1} \frac{1}{k^{m+1}} = \sum_{k=n}^\infty \frac{1}{k^{m+1}} \qquad m \ge 1</math> and :<math>\psi^{(0)}(n) = -\gamma\ + \sum_{k=1}^{n-1}\frac{1}{k}</math> for all <math>n \in \mathbb{N}</math>, where <math>\gamma</math> is the [[Euler–Mascheroni constant]]. Like the log-gamma function, the polygamma functions can be generalized from the domain {{math|[[Natural number|<math>\mathbb{N}</math>]]}} [[unique (mathematics)|unique]]ly to positive real numbers only due to their recurrence relation and one given function-value, say {{math|''ψ''<sup>(''m'')</sup>(1)}}, except in the case {{math|''m'' {{=}} 0}} where the additional condition of strict [[Monotonic function|monotonicity]] on <math>\mathbb{R}^{+}</math> is still needed. This is a trivial consequence of the [[Bohr–Mollerup theorem]] for the gamma function where strictly logarithmic convexity on <math>\mathbb{R}^{+}</math> is demanded additionally. The case {{math|''m'' {{=}} 0}} must be treated differently because {{math|''ψ''<sup>(0)</sup>}} is not normalizable at infinity (the sum of the reciprocals doesn't converge). ==Reflection relation== :<math>(-1)^m \psi^{(m)} (1-z) - \psi^{(m)} (z) = \pi \frac{\mathrm{d}^m}{\mathrm{d} z^m} \cot{\pi z} = \pi^{m+1} \frac{P_m(\cos{\pi z})}{\sin^{m+1}(\pi z)}</math> where {{math|''P<sub>m</sub>''}} is alternately an odd or even polynomial of degree {{math|{{abs|''m'' − 1}}}} with integer coefficients and leading coefficient {{math|(−1)<sup>''m''</sup>⌈2<sup>''m'' − 1</sup>⌉}}. They obey the recursion equation :<math>\begin{align} P_0(x) &= x \\ P_{m+1}(x) &= - \left( (m+1)xP_m(x)+\left(1-x^2\right)P'_m(x)\right).\end{align}</math> ==Multiplication theorem== The [[multiplication theorem]] gives :<math>k^{m+1} \psi^{(m)}(kz) = \sum_{n=0}^{k-1} \psi^{(m)}\left(z+\frac{n}{k}\right)\qquad m \ge 1</math> and :<math>k \psi^{(0)}(kz) = k\ln{k} + \sum_{n=0}^{k-1} \psi^{(0)}\left(z+\frac{n}{k}\right)</math> for the [[digamma function]]. ==Series representation== The polygamma function has the series representation :<math>\psi^{(m)}(z) = (-1)^{m+1}\, m! \sum_{k=0}^\infty \frac{1}{(z+k)^{m+1}}</math> which holds for integer values of {{math|''m'' > 0}} and any complex {{mvar|z}} not equal to a negative integer. This representation can be written more compactly in terms of the [[Hurwitz zeta function]] as :<math>\psi^{(m)}(z) = (-1)^{m+1}\, m!\, \zeta (m+1,z).</math> This relation can for example be used to compute the special values<ref> {{cite journal|first1=K. S. |last1=Kölbig|year=1996|journal=Journal of Computational and Applied Mathematics |volume=75|number=1|pages=43–46|title=The polygamma function <math>\psi^{(k)}(x)</math> for <math>x=\frac{1}{4}</math> and <math>x=\frac{3}{4}</math>|doi=10.1016/S0377-0427(96)00055-6|doi-access=free}} </ref> :<math> \psi^{(2n-1)}\left(\frac14\right) = \frac{4^{2n-1}}{2n}\left(\pi^{2n}(2^{2n}-1)|B_{2n}|+2(2n)!\beta(2n)\right); </math> :<math> \psi^{(2n-1)}\left(\frac34\right) = \frac{4^{2n-1}}{2n}\left(\pi^{2n}(2^{2n}-1)|B_{2n}|-2(2n)!\beta(2n)\right); </math> :<math> \psi^{(2n)}\left(\frac14\right) = -2^{2n-1}\left(\pi^{2n+1}|E_{2n}|+2(2n)!(2^{2n+1}-1)\zeta(2n+1)\right); </math> :<math> \psi^{(2n)}\left(\frac34\right) = 2^{2n-1}\left(\pi^{2n+1}|E_{2n}|-2(2n)!(2^{2n+1}-1)\zeta(2n+1)\right). </math> Alternately, the Hurwitz zeta can be understood to generalize the polygamma to arbitrary, non-integer order. One more series may be permitted for the polygamma functions. As given by [[Schlömilch]], :<math>\frac{1}{\Gamma(z)} = z e^{\gamma z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}.</math> This is a result of the [[Weierstrass factorization theorem]]. Thus, the gamma function may now be defined as: :<math>\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^\frac{z}{n}.</math> Now, the [[natural logarithm]] of the gamma function is easily representable: :<math>\ln \Gamma(z) = -\gamma z - \ln(z) + \sum_{k=1}^\infty \left( \frac{z}{k} - \ln\left(1 + \frac{z}{k}\right) \right).</math> Finally, we arrive at a summation representation for the polygamma function: :<math>\psi^{(n)}(z) = \frac{\mathrm{d}^{n+1}}{\mathrm{d}z^{n+1}}\ln \Gamma(z) = -\gamma \delta_{n0} - \frac{(-1)^n n!}{z^{n+1}} + \sum_{k=1}^{\infty} \left(\frac{1}{k} \delta_{n0} - \frac{(-1)^n n!}{(k+z)^{n+1}}\right)</math> Where {{math|''δ''<sub>''n''0</sub>}} is the [[Kronecker delta]]. Also the [[Lerch transcendent]] :<math>\Phi(-1, m+1, z) = \sum_{k=0}^\infty \frac{(-1)^k}{(z+k)^{m+1}}</math> can be denoted in terms of polygamma function :<math>\Phi(-1, m+1, z)=\frac1{(-2)^{m+1}m!}\left(\psi^{(m)}\left(\frac{z}{2}\right)-\psi^{(m)}\left(\frac{z+1}{2}\right)\right)</math> ==Taylor series== The [[Taylor series]] at {{math|''z'' {{=}} -1}} is :<math>\psi^{(m)}(z+1)= \sum_{k=0}^\infty (-1)^{m+k+1} \frac {(m+k)!}{k!} \zeta (m+k+1) z^k \qquad m \ge 1</math> and :<math>\psi^{(0)}(z+1)= -\gamma +\sum_{k=1}^\infty (-1)^{k+1}\zeta (k+1) z^k</math> which converges for {{math|{{abs|''z''}} < 1}}. Here, {{mvar|ζ}} is the [[Riemann zeta function]]. This series is easily derived from the corresponding Taylor series for the Hurwitz zeta function. This series may be used to derive a number of [[rational zeta series]]. ==Asymptotic expansion== These non-converging series can be used to get quickly an approximation value with a certain numeric at-least-precision for large arguments:<ref>{{cite journal|first1=J.|last1=Blümlein|journal=Comput. Phys. Commun.|year=2009|volume=180|pages=2218–2249|doi=10.1016/j.cpc.2009.07.004|title=Structural relations of harmonic sums and Mellin transforms up to weight w=5|issue=11 |arxiv=0901.3106|bibcode=2009CoPhC.180.2218B }}</ref> : <math> \psi^{(m)}(z) \sim (-1)^{m+1}\sum_{k=0}^{\infty}\frac{(k+m-1)!}{k!}\frac{B_k}{z^{k+m}} \qquad m \ge 1</math> and :<math> \psi^{(0)}(z) \sim \ln(z) - \sum_{k=1}^\infty \frac{B_k}{k z^k}</math> where we have chosen {{math|''B''<sub>1</sub> {{=}} {{sfrac|1|2}}}}, i.e. the [[Bernoulli numbers]] of the second kind. ==Inequalities== The [[hyperbolic cotangent]] satisfies the inequality :<math>\frac{t}{2}\operatorname{coth}\frac{t}{2} \ge 1,</math> and this implies that the function :<math>\frac{t^m}{1 - e^{-t}} - \left(t^{m-1} + \frac{t^m}{2}\right)</math> is non-negative for all {{math|''m'' ≥ 1}} and {{math|''t'' ≥ 0}}. It follows that the Laplace transform of this function is completely monotone. By the integral representation above, we conclude that :<math>(-1)^{m+1}\psi^{(m)}(x) - \left(\frac{(m-1)!}{x^m} + \frac{m!}{2x^{m+1}}\right)</math> is completely monotone. The convexity inequality {{math|''e<sup>t</sup>'' ≥ 1 + ''t''}} implies that :<math>\left(t^{m-1} + t^m\right) - \frac{t^m}{1 - e^{-t}}</math> is non-negative for all {{math|''m'' ≥ 1}} and {{math|''t'' ≥ 0}}, so a similar Laplace transformation argument yields the complete monotonicity of :<math>\left(\frac{(m-1)!}{x^m} + \frac{m!}{x^{m+1}}\right) - (-1)^{m+1}\psi^{(m)}(x).</math> Therefore, for all {{math|''m'' ≥ 1}} and {{math|''x'' > 0}}, :<math>\frac{(m-1)!}{x^m} + \frac{m!}{2x^{m+1}} \le (-1)^{m+1}\psi^{(m)}(x) \le \frac{(m-1)!}{x^m} + \frac{m!}{x^{m+1}}.</math> Since both bounds are ''strictly'' positive for <math>x>0</math>, we have: * <math>\ln\Gamma(x)</math> is strictly [[convex function|convex]]. * For <math>m=0</math>, the digamma function, <math>\psi(x)=\psi^{(0)}(x)</math>, is strictly monotonic increasing and strictly [[concave function|concave]]. * For <math>m</math> odd, the polygamma functions, <math>\psi^{(1)},\psi^{(3)},\psi^{(5)},\ldots</math>, are strictly positive, strictly monotonic decreasing and strictly convex. * For <math>m</math> even the polygamma functions, <math>\psi^{(2)},\psi^{(4)},\psi^{(6)},\ldots</math>, are strictly negative, strictly monotonic increasing and strictly concave. This can be seen in the first plot above. ===Trigamma bounds and asymptote=== For the case of the [[trigamma function]] (<math>m=1</math>) the final inequality formula above for <math>x>0</math>, can be rewritten as: :<math> \frac{x+\frac12}{x^2} \le \psi^{(1)}(x)\le \frac{x+1}{x^2} </math> so that for <math>x\gg1</math>: <math>\psi^{(1)}(x)\approx\frac1x</math>. ==See also== * [[Factorial]] * [[Gamma function]] * [[Digamma function]] * [[Trigamma function]] * [[Generalized polygamma function]] ==References== {{Reflist}} * {{cite book|first1=Milton|last1=Abramowitz|first2=Irene A.|last2=Stegun|title=[[Abramowitz and Stegun|Handbook of Mathematical Functions]]|date=1964|publisher=Dover Publications|location=New York|isbn=978-0-486-61272-0|chapter-url=https://personal.math.ubc.ca/~cbm/aands/page_260.htm|chapter=Section 6.4}} [[Category:Gamma and related functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:For
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:One source
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Use American English
(
edit
)