Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pontryagin class
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[mathematics]], the '''Pontryagin classes''', named after [[Lev Pontryagin]], are certain [[characteristic class]]es of real vector bundles. The Pontryagin classes lie in [[cohomology group]]s with degrees a multiple of four. == Definition == Given a real vector bundle <math>E</math> over <math>M</math>, its <math>k</math>-th Pontryagin class <math>p_k(E)</math> is defined as :<math>p_k(E) = p_k(E, \Z) = (-1)^k c_{2k}(E\otimes \Complex) \in H^{4k}(M, \Z),</math> where: *<math>c_{2k}(E\otimes \Complex)</math> denotes the <math>2k</math>-th [[Chern class]] of the [[complexification]] <math>E\otimes \Complex = E\oplus iE</math> of <math>E</math>, *<math>H^{4k}(M, \Z)</math> is the <math>4k</math>-[[cohomology]] group of <math>M</math> with [[integer]] coefficients. The rational Pontryagin class <math>p_k(E, \Q)</math> is defined to be the image of <math>p_k(E)</math> in <math>H^{4k}(M, \Q)</math>, the <math>4k</math>-cohomology group of <math>M</math> with [[Rational number|rational]] coefficients. == Properties == The '''total Pontryagin class''' :<math>p(E)=1+p_1(E)+p_2(E)+\cdots\in H^*(M,\Z),</math> is (modulo 2-torsion) multiplicative with respect to [[Glossary of differential geometry and topology#W|Whitney sum]] of vector bundles, i.e., :<math>2p(E\oplus F)=2p(E)\smile p(F)</math> for two vector bundles <math>E</math> and <math>F</math> over <math>M</math>. In terms of the individual Pontryagin classes <math>p_k</math>, :<math>2p_1(E\oplus F)=2p_1(E)+2p_1(F),</math> :<math>2p_2(E\oplus F)=2p_2(E)+2p_1(E)\smile p_1(F)+2p_2(F)</math> and so on. The vanishing of the Pontryagin classes and [[Stiefel–Whitney class]]es of a vector bundle does not guarantee that the vector bundle is trivial. For example, up to [[Vector bundle#Vector bundle morphisms|vector bundle isomorphism]], there is a unique nontrivial rank 10 vector bundle <math>E_{10}</math> over the [[N-sphere|9-sphere]]. (The [[Clutching construction|clutching function]] for <math>E_{10}</math> arises from the [[Orthogonal group#Homotopy groups|homotopy group]] <math>\pi_8(\mathrm{O}(10)) = \Z/2\Z</math>.) The Pontryagin classes and Stiefel-Whitney classes all vanish: the Pontryagin classes don't exist in degree 9, and the Stiefel–Whitney class <math>w_9</math> of <math>E_{10}</math> vanishes by the [[Stiefel-Whitney class#Relations over the Steenrod algebra|Wu formula]] <math>w_9 = w_1 w_8 + Sq^1(w_8)</math>. Moreover, this vector bundle is stably nontrivial, i.e. the [[Glossary of differential geometry and topology#W|Whitney sum]] of <math>E_{10}</math> with any trivial bundle remains nontrivial. {{Harv|Hatcher|2009|p=76}} Given a <math>2 k</math>-dimensional vector bundle <math>E</math> we have :<math>p_k(E)=e(E)\smile e(E),</math> where <math>e(E)</math> denotes the [[Euler class]] of <math>E</math>, and <math>\smile</math> denotes the [[cup product]] of cohomology classes. === Pontryagin classes and curvature === As was shown by [[Shiing-Shen Chern]] and [[André Weil]] around 1948, the rational Pontryagin classes :<math>p_k(E,\mathbf{Q})\in H^{4k}(M,\mathbf{Q})</math> can be presented as differential forms which depend polynomially on the [[curvature form]] of a vector bundle. This [[Chern–Weil theory]] revealed a major connection between algebraic topology and global differential geometry. For a [[vector bundle]] <math>E</math> over a <math>n</math>-dimensional [[differentiable manifold]] <math>M</math> equipped with a [[connection form|connection]], the total Pontryagin class is expressed as :<math>p=\left[1-\frac{{\rm Tr}(\Omega ^2)}{8 \pi ^2}+\frac{{\rm Tr}(\Omega ^2)^2-2 {\rm Tr}(\Omega ^4)}{128 \pi ^4}-\frac{{\rm Tr}(\Omega ^2)^3-6 {\rm Tr}(\Omega ^2) {\rm Tr}(\Omega ^4)+8 {\rm Tr}(\Omega ^6)}{3072 \pi ^6}+\cdots\right]\in H^*_{dR}(M),</math> where <math>\Omega</math> denotes the [[curvature form]], and <math>H^*_{dR} (M)</math> denotes the [[de Rham cohomology]] groups.{{fact|date=November 2024}} === Pontryagin classes of a manifold === The '''Pontryagin classes of a smooth manifold''' are defined to be the Pontryagin classes of its [[tangent bundle]]. [[Sergei Novikov (mathematician)|Novikov]] proved in 1966 that if two compact, oriented, smooth manifolds are [[homeomorphism|homeomorphic]] then their rational Pontryagin classes <math>p_k(M, \mathbf{Q})</math> in <math>H^{4k}(M, \mathbf{Q})</math> are the same. If the dimension is at least five, there are at most finitely many different smooth manifolds with given [[Homotopy#Homotopy equivalence of spaces|homotopy type]] and Pontryagin classes.<ref>{{cite journal |last1=Novikov |first1=S. P. |author-link1=Sergei Novikov (mathematician) |title=Homotopically equivalent smooth manifolds. I |journal=Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya |date=1964 |volume=28 |pages=365–474 |mr=162246}}</ref> === Pontryagin classes from Chern classes === The Pontryagin classes of a complex vector bundle <math>\pi: E \to X</math> is completely determined by its Chern classes. This follows from the fact that <math>E\otimes_{\mathbb{R}}\mathbb{C} \cong E\oplus \bar{E}</math>, the Whitney sum formula, and properties of Chern classes of its complex conjugate bundle. That is, <math>c_i(\bar{E}) = (-1)^ic_i(E)</math> and <math>c(E\oplus\bar{E}) = c(E)c(\bar{E})</math>. Then, given this relation, we can see<blockquote><math> 1 - p_1(E) + p_2(E) - \cdots + (-1)^np_n(E) = (1 + c_1(E) + \cdots + c_n(E)) \cdot (1 - c_1(E) + c_2(E) -\cdots + (-1)^nc_n(E)) </math><ref>{{Cite web|url=https://www.math.stonybrook.edu/~markmclean/MAT566/lecture13.pdf|title=Pontryagin Classes|last=Mclean|first=Mark|date=|website=|url-status=live|archive-url=https://web.archive.org/web/20161108093927/https://www.math.stonybrook.edu/~markmclean/MAT566/lecture13.pdf|archive-date=2016-11-08}}{{self-published inline|date=November 2024}}</ref>.</blockquote>For example, we can apply this formula to find the Pontryagin classes of a complex vector bundle on a curve and a surface. For a curve, we have<blockquote><math>(1-c_1(E))(1 + c_1(E)) = 1 + c_1(E)^2</math></blockquote>so all of the Pontryagin classes of complex vector bundles are trivial. In general, looking at first two terms of the product<blockquote><math>(1-c_1(E) + c_2(E) + \ldots + (-1)^n c_n(E))(1 + c_1(E) + c_2(E) +\ldots + c_n(E)) = 1 - c_1(E)^2 + 2c_2(E) + \ldots</math></blockquote>we can see that <math>p_1(E) = c_1(E)^2 - 2c_2(E)</math>. In particular, for line bundles this simplifies further since <math>c_2(L) = 0</math> by dimension reasons. === Pontryagin classes on a Quartic K3 Surface === Recall that a quartic polynomial whose vanishing locus in <math>\mathbb{CP}^3</math> is a smooth subvariety is a K3 surface. If we use the normal sequence<blockquote><math>0 \to \mathcal{T}_X \to \mathcal{T}_{\mathbb{CP}^3}|_X \to \mathcal{O}(4) \to 0</math></blockquote>we can find<blockquote><math>\begin{align} c(\mathcal{T}_X) &= \frac{c(\mathcal{T}_{\mathbb{CP}^3}|_X)}{c(\mathcal{O}(4))} \\ &= \frac{(1+[H])^4}{(1+4[H])} \\ &= (1 + 4[H] + 6[H]^2)\cdot(1 - 4[H] + 16[H]^2) \\ &= 1 + 6[H]^2 \end{align}</math></blockquote>showing <math>c_1(X) = 0</math> and <math>c_2(X) = 6[H]^2</math>. Since <math>[H]^2</math> corresponds to four points, due to Bézout's lemma, we have the second chern number as <math>24</math>. Since <math>p_1(X) = -2c_2(X)</math> in this case, we have <math>p_1(X) = -48</math>. This number can be used to compute the third stable homotopy group of spheres.<ref>{{Cite web|url=http://math.mit.edu/~guozhen/homotopy%20groups.pdf|title=A Survey of Computations of Homotopy Groups of Spheres and Cobordisms|last=|first=|date=|website=|page=16|url-status=live|archive-url=https://web.archive.org/web/20160122111116/http://math.mit.edu/~guozhen/homotopy%20groups.pdf|archive-date=2016-01-22|access-date=}}{{self-published inline|date=November 2024}}</ref> == Pontryagin numbers == '''Pontryagin numbers''' are certain [[topological invariant]]s of a smooth [[manifold]]. Each Pontryagin number of a manifold <math>M</math> vanishes if the dimension of <math>M</math> is not divisible by 4. It is defined in terms of the Pontryagin classes of the [[manifold]] <math>M</math> as follows: Given a smooth <math>4 n</math>-dimensional manifold <math>M</math> and a collection of natural numbers :<math>k_1, k_2, \ldots , k_m</math> such that <math>k_1+k_2+\cdots +k_m =n</math>, the Pontryagin number <math>P_{k_1,k_2,\dots,k_m}</math> is defined by :<math>P_{k_1,k_2,\dots, k_m}=p_{k_1}\smile p_{k_2}\smile \cdots\smile p_{k_m}([M])</math> where <math>p_k</math> denotes the <math>k</math>-th Pontryagin class and <math>[M]</math> the [[fundamental class]] of <math>M</math>. === Properties === #Pontryagin numbers are oriented [[cobordism]] invariant; and together with [[Stiefel-Whitney number]]s they determine an oriented manifold's oriented cobordism class. #Pontryagin numbers of closed [[Riemannian manifold]]s (as well as Pontryagin classes) can be calculated as integrals of certain polynomials from the curvature tensor of a Riemannian manifold. #Invariants such as [[Signature (topology)|signature]] and [[Â genus|<math>\hat A</math>-genus]] can be expressed through Pontryagin numbers. For the theorem describing the linear combination of Pontryagin numbers giving the signature see [[Hirzebruch signature theorem]]. == Generalizations == There is also a ''quaternionic'' Pontryagin class, for vector bundles with [[quaternion]] structure. == See also == *[[Chern–Simons form]] *[[Hirzebruch signature theorem]] == References == {{Reflist}} *{{cite book |author= Milnor John W. |author-link= John Milnor |author2=Stasheff, James D. |authorlink2=Jim Stasheff |title= Characteristic classes |series= Annals of Mathematics Studies |issue=76 |publisher=Princeton University Press / University of Tokyo Press |location=Princeton, New Jersey; Tokyo |year= 1974 |isbn= 0-691-08122-0}} * {{Cite book | last=Hatcher | first=Allen | author-link=Allen Hatcher | title=Vector Bundles & K-Theory | edition=2.1 | year=2009 | url=http://pi.math.cornell.edu/~hatcher/VBKT/VBpage.html}} ==External links== * {{springer|title=Pontryagin class|id=p/p073750|mode=cs1}} [[Category:Characteristic classes]] [[Category:Differential topology]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Fact
(
edit
)
Template:Harv
(
edit
)
Template:Reflist
(
edit
)
Template:Self-published inline
(
edit
)
Template:Springer
(
edit
)