Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Positive operator
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|In mathematics, a linear operator acting on inner product space}} In [[mathematics]] (specifically [[linear algebra]], [[operator theory]], and [[functional analysis]]) as well as [[physics]], a [[linear operator]] <math>A</math> acting on an [[inner product space]] is called '''positive-semidefinite''' (or ''non-negative'') if, for every <math>x \in \operatorname{Dom}(A)</math>, <math>\langle Ax, x\rangle \in \mathbb{R}</math> and <math>\langle Ax, x\rangle \geq 0</math>, where <math>\operatorname{Dom}(A)</math> is the [[Domain of a function|domain]] of <math>A</math>. Positive-semidefinite operators are denoted as <math>A\ge 0</math>. The operator is said to be '''positive-definite''', and written <math>A>0</math>, if <math>\langle Ax,x\rangle>0,</math> for all <math>x\in\mathop{\mathrm{Dom}}(A) \setminus \{0\}</math>.<ref>{{harvnb|Roman|2008|loc=p. 250 §10}}</ref> Many authors define a '''positive operator''' <math>A </math> to be a [[self-adjoint operator|self-adjoint]] (or at least symmetric) non-negative operator. We show below that for a complex Hilbert space the self adjointness follows automatically from non-negativity. For a real Hilbert space non-negativity does not imply self adjointness. In physics (specifically [[quantum mechanics]]), such operators represent [[quantum state]]s, via the [[density matrix]] formalism. == Cauchy–Schwarz inequality == {{Main|Cauchy–Schwarz inequality}} Take the inner product <math>\langle \cdot, \cdot \rangle</math> to be [[Antilinear map|anti-linear]] on the ''first'' argument and linear on the second and suppose that <math>A </math> is positive and symmetric, the latter meaning that <math> \langle Ax,y \rangle= \langle x,Ay \rangle </math>. Then the non negativity of :<math> \begin{align} \langle A(\lambda x+\mu y),\lambda x+\mu y \rangle =|\lambda|^2 \langle Ax,x \rangle + \lambda^* \mu \langle Ax,y \rangle+ \lambda \mu^* \langle Ay,x \rangle + |\mu|^2 \langle Ay,y \rangle \\[1mm] = |\lambda|^2 \langle Ax,x \rangle + \lambda^* \mu \langle Ax,y \rangle+ \lambda \mu^* (\langle Ax,y \rangle)^* + |\mu|^2 \langle Ay,y \rangle \end{align} </math> for all complex <math>\lambda </math> and <math> \mu </math> shows that :<math>\left|\langle Ax,y\rangle \right|^2 \leq \langle Ax,x\rangle \langle Ay,y\rangle.</math> It follows that <math>\mathop{\text{Im}}A \perp \mathop{\text{Ker}}A.</math> If <math>A</math> is defined everywhere, and <math>\langle Ax,x\rangle = 0,</math> then <math>Ax = 0.</math> == On a complex Hilbert space, if an operator is non-negative then it is symmetric == For <math>x,y \in \operatorname{Dom}A,</math> the [[polarization identity]] :<math> \begin{align} \langle Ax,y\rangle = \frac{1}{4}({} & \langle A(x+y),x+y\rangle - \langle A(x-y),x-y\rangle \\[1mm] & {} - i\langle A(x+iy),x+iy\rangle + i\langle A(x-iy),x-iy\rangle) \end{align} </math> and the fact that <math>\langle Ax,x\rangle = \langle x,Ax\rangle,</math> for positive operators, show that <math>\langle Ax,y\rangle = \langle x,Ay\rangle,</math> so <math>A</math> is symmetric. In contrast with the complex case, a positive-semidefinite operator on a real Hilbert space <math>H_\mathbb{R}</math> may not be symmetric. As a counterexample, define <math>A : \mathbb{R}^2 \to \mathbb{R}^2</math> to be an operator of rotation by an [[acute angle]] <math>\varphi \in ( -\pi/2,\pi/2).</math> Then <math>\langle Ax,x \rangle = \|Ax\|\|x\|\cos\varphi > 0, </math> but <math>A^* = A^{-1} \neq A,</math> so <math>A</math> is not symmetric. == If an operator is non-negative and defined on the whole complex Hilbert space, then it is self-adjoint and [[bounded operator|bounded]] == The symmetry of <math>A</math> implies that <math>\operatorname{Dom}A \subseteq \operatorname{Dom}A^*</math> and <math>A = A^*|_{\operatorname{Dom}(A)}.</math> For <math>A</math> to be self-adjoint, it is necessary that <math>\operatorname{Dom}A = \operatorname{Dom}A^*.</math> In our case, the equality of [[domain of a function|domains]] holds because <math>H_\mathbb{C} = \operatorname{Dom}A \subseteq \operatorname{Dom}A^*,</math> so <math>A</math> is indeed self-adjoint. The fact that <math>A</math> is bounded now follows from the [[Hellinger–Toeplitz theorem]]. This property does not hold on <math>H_\mathbb{R}.</math> == Partial order of self-adjoint operators == A natural [[partial ordering]] of self-adjoint operators arises from the definition of positive operators. Define <math>B \geq A</math> if the following hold: # <math>A</math> and <math>B</math> are self-adjoint # <math>B - A \geq 0</math> It can be seen that a similar result as the [[Monotone convergence theorem]] holds for [[monotone increasing]], bounded, self-adjoint operators on Hilbert spaces.<ref>Eidelman, Yuli, Vitali D. Milman, and Antonis Tsolomitis. 2004. Functional analysis: an introduction. Providence (R.I.): American mathematical Society.</ref> == Application to physics: quantum states == {{Main|Quantum state|Density operator}} The definition of a [[quantum system]] includes a complex [[separable Hilbert space]] <math>H_\mathbb{C}</math> and a set <math>\cal S</math> of positive [[trace-class]] [[density operator|operators]] <math>\rho</math> on <math>H_\mathbb{C}</math> for which <math>\mathop{\text{Trace}}\rho = 1.</math> The [[Set (mathematics)|set]] <math>\cal S</math> is ''the set of states''. Every <math>\rho \in {\cal S}</math> is called a ''state'' or a ''density operator''. For <math>\psi \in H_\mathbb{C},</math> where <math>\|\psi\| = 1,</math> the operator <math>P_\psi</math> of projection onto the [[Linear span|span]] of <math>\psi</math> is called a ''[[pure state]]''. (Since each pure state is identifiable with a [[unit vector]] <math>\psi \in H_\mathbb{C},</math> some sources define pure states to be unit elements from <math>H_\mathbb{C}).</math> States that are not pure are called ''[[Mixed state (physics)|mixed]]''. == References == {{Reflist}} * {{Citation | last1=Conway | first1=John B.| title=Functional Analysis: An Introduction | publisher=[[Springer Verlag]] | isbn=0-387-97245-5 | year=1990}} *{{citation | last=Roman | first=Stephen | title=Advanced Linear Algebra | edition=Third | series=[[Graduate Texts in Mathematics]] | publisher = Springer | date=2008| pages= | isbn=978-0-387-72828-5 |author-link=Steven Roman}} [[Category:Operator theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Harvnb
(
edit
)
Template:Main
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)