Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prime reciprocal magic square
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Type of magic square}} A '''prime reciprocal magic square''' is a [[magic square]] using the decimal digits of the [[Reciprocal (mathematics)|reciprocal]] of a [[prime number]]. == Formulation == === Basics === In [[decimal]], [[unit fraction]]s {{sfrac|1|2}} and {{sfrac|1|5}} have no [[repeating decimal]], while {{sfrac|1|3}} repeats <math>0.3333\dots</math> indefinitely. The remainder of {{sfrac|1|7}}, on the other hand, repeats over six digits as, <math display=block>0.\bold{1}42857\bold{1}42857\bold{1}\dots</math> Consequently, multiples of one-seventh exhibit [[cyclic permutation]]s of these six digits:<ref name="Wells">{{Cite book |last=Wells |first= D. |title=The Penguin Dictionary of Curious and Interesting Numbers |url=https://archive.org/details/penguindictionar0000well_f3y1/mode/2up |url-access=registration |publisher=[[Penguin Books]] |location=London |year=1987 |pages=171β174 |isbn=0-14-008029-5 |oclc=39262447 |s2cid=118329153 }}</ref> <math display=block> \begin{align} 1/7 & = 0.1 4 2 8 5 7\dots \\ 2/7 & = 0.2 8 5 7 1 4\dots \\ 3/7 & = 0.4 2 8 5 7 1\dots \\ 4/7 & = 0.5 7 1 4 2 8\dots \\ 5/7 & = 0.7 1 4 2 8 5\dots \\ 6/7 & = 0.8 5 7 1 4 2\dots \end{align}</math> If the digits are laid out as a [[square]], each row and column sums to {{math|1=1 + 4 + 2 + 8 + 5 + 7 = 27.}} This yields the smallest base-10 non-normal, prime reciprocal [[magic square]] {| | class=wikitable style="text-align: center;width:12em;height:12em;table-layout:fixed" |- | {{val|1}} || {{val|4}} || {{val|2}} || {{val|8}} || {{val|5}} || {{val|7}} |- | {{val|2}} || {{val|8}} || {{val|5}} || {{val|7}} || {{val|1}} || {{val|4}} |- | {{val|4}} || {{val|2}} || {{val|8}} || {{val|5}} || {{val|7}} || {{val|1}} |- | {{val|5}} || {{val|7}} || {{val|1}} || {{val|4}} || {{val|2}} || {{val|8}} |- | {{val|7}} || {{val|1}} || {{val|4}} || {{val|2}} || {{val|8}} || {{val|5}} |- | {{val|8}} || {{val|5}} || {{val|7}} || {{val|1}} || {{val|4}} || {{val|2}} |} In contrast with its rows and columns, the ''diagonals'' of this square do not sum to {{val|27}}; however, their [[Arithmetic mean|mean]] is {{val|27}}, as one diagonal adds to {{val|23}} while the other adds to {{val|31}}. All prime reciprocals in any [[Radix|base]] with a <math>p - 1</math> period will generate magic squares where all rows and columns produce a [[magic constant]], and only a select few will be '''full''', such that their diagonals, rows and columns collectively yield equal sums. === Decimal expansions === In a full, or otherwise prime reciprocal magic square with <math>p - 1</math> period, the even number of {{mvar|k}}βth rows in the square are arranged by multiples of <math>1/p</math> β not necessarily successively β where a magic constant can be obtained. For instance, an [[Parity (mathematics)|even]] repeating [[Cyclic number|cycle]] from an odd, prime reciprocal of {{mvar|p}} that is divided into {{mvar|n}}βdigit strings creates pairs of [[Method of complements#Numeric complements|complementary sequences]] of digits that yield strings of nines ({{val|9}}) when added together: <math display=block> \begin{align} 1/7 = & \text { } 0.142\;857\dots \\ + & \text { } 0.857\;142\ldots = 6/7\\ & ------------ \\ & \text { } 0.999\;999\ldots \\ \\ 1/13 = & \text { } 0.076\;923\;076\;923\dots \\ + & \text { } 0.923\;076\;923\;076\ldots = 12/13\\ & ------------ \\ & \text { } 0.999\;999\;999\;999\ldots \\ \\ 1/19 = & \text { } 0.052631578\;947368421\dots \\ + & \text { } 0.947368421\;052631578\ldots = 18/19\\ & ------------ \\ & \text { } 0.999999999\;999999999\dots \\ \end{align}</math> This is a result of [[Midy's theorem]].<ref>{{Cite book |last1=Rademacher |first1=Hans |author1-link=Hans Rademacher |last2=Toeplitz |first2=Otto |author2-link=Otto Toeplitz |title=The Enjoyment of Mathematics: Selections from Mathematics for the Amateur. |url=https://archive.org/details/enjoymentofmathe0000rade/page/160/mode/2up|url-access=registration |publisher=[[Princeton University Press]] |edition=2nd |location= Princeton, NJ |year=1957 |pages=158β160 |isbn=9780486262420 |oclc=20827693 |mr=0081844 |zbl=0078.00114 }}</ref><ref>{{Cite journal |last=Leavitt |first=William G. |title=A Theorem on Repeating Decimals |url=http://digitalcommons.unl.edu/mathfacpub/48/ |journal=[[The American Mathematical Monthly]] |volume=74 |issue=6 |pages=669β673 |year=1967 |publisher=[[Mathematical Association of America]] |location=Washington, D.C. |doi=10.2307/2314251 |jstor=2314251 |mr=0211949 |zbl=0153.06503 }}</ref> These complementary sequences are generated between multiples of [[Reciprocals of primes|prime reciprocals]] that add to 1. More specifically, a factor {{mvar|n}} in the numerator of the reciprocal of a prime number {{mvar|p}} will shift the [[decimal place]]s of its decimal expansion accordingly, <math display=block> \begin{align} 1/23 & = 0.04347826\;08695652\;173913\ldots \\ 2/23 & = 0.08695652\;17391304\;347826\ldots \\ 4/23 & = 0.17391304\;34782608\;695652\ldots \\ 8/23 & = 0.34782608\;69565217\;391304\ldots \\ 16/23 & = 0.69565217\;39130434\;782608\ldots \\ \end{align}</math> In this case, a factor of {{val|2}} moves the repeating decimal of {{sfrac|1|23}} by eight places. A uniform solution of a prime reciprocal magic square, whether full or not, will hold rows with successive multiples of <math>1/p</math>. Other magic squares can be constructed whose rows do not represent consecutive multiples of <math>1/p</math>, which nonetheless generate a magic sum. == Magic constant == {| class="wikitable floatright" style="text-align: right;" |+ some prime numbers that generate prime-reciprocal magic squares in given bases ! Prime !! Base !! Magic sum |- | 19 || 10 || 81 |- | 53 || 12 || 286 |- | 59 || 2 || 29 |- | 67 || 2 || 33 |- | 83 || 2 || 41 |- | 89 || 19 || 792 |- | 211 || 2 || 105 |- | 223 || 3 || 222 |- | 307 || 5 || 612 |- | 383 || 10 || {{val|1719|fmt=commas}} |- | 397 || 5 || 792 |- | 487 || 6 || {{val|1215|fmt=commas}} |- | 593 || 3 || 592 |- | 631 || 87 || {{val|27090|fmt=commas}} |- | 787 || 13 || {{val|4716|fmt=commas}} |- | 811 || 3 || 810 |- | {{val|1033|fmt=commas}} || 11 || {{val|5160|fmt=commas}} |- | {{val|1307|fmt=commas}} || 5 || {{val|2612|fmt=commas}} |- | {{val|1499|fmt=commas}} || 11 || {{val|7490|fmt=commas}} |- | {{val|1877|fmt=commas}} || 19 || {{val|16884|fmt=commas}} |- | {{val|2011|fmt=commas}} || 26 || {{val|25125|fmt=commas}} |- | {{val|2027|fmt=commas}} || 2 || {{val|1013|fmt=commas}} |} Magic squares based on reciprocals of primes {{mvar|p}} in bases {{mvar|b}} with periods <math>p - 1</math> have [[magic sum]]s equal to,{{cn|date=January 2024}} <math display=block>M = (b-1) \times \frac {p-1}{2}.</math> == Full magic squares == The <math>\bold{\tfrac {1}{19}}</math> magic square with maximum period 18 contains a row-and-column total of 81, that is also obtained by both diagonals. This makes it the first full, non-normal base-10 prime reciprocal magic square whose multiples fit inside respective <math>k</math>βth rows:<ref>{{Cite book|last=Andrews |first=William Symes |title=Magic Squares and Cubes |url=http://djm.cc/library/Magic_Squares_Cubes_Andrews_edited.pdf |publisher=[[Open Court Publishing Company]] |location=Chicago, IL |year=1917 |pages=176, 177 |isbn=9780486206585 |oclc=1136401 |zbl=1003.05500 |mr=0114763 }}</ref><ref>{{Cite OEIS |A021023 |Decimal expansion of 1/19. |access-date=2023-11-21 }}</ref> <math display=block> \begin{align} 1/19 & = 0. {\color{red}0} \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } {\color{red}1} \dots \\ 2/19 & = 0.1 \text { } {\color{red}0} \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } {\color{red}4} \text { } 2 \dots \\ 3/19 & = 0.1 \text { } 5 \text { } {\color{red}7} \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } {\color{red}2} \text { } 6 \text { } 3 \dots \\ 4/19 & = 0.2 \text { } 1 \text { } 0 \text { } {\color{red}5} \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } {\color{red}3} \text { } 6 \text { } 8 \text { } 4 \dots \\ 5/19 & = 0.2 \text { } 6 \text { } 3 \text { } 1 \text { } {\color{red}5} \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } {\color{red}4} \text { } 2 \text { } 1 \text { } 0 \text { } 5 \dots \\ 6/19 & = 0.3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } {\color{red}9} \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } {\color{red}2} \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \dots \\ 7/19 & = 0.3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } {\color{red}0} \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } {\color{red}1} \text { } 5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \dots \\ 8/19 & = 0.4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } {\color{red}3} \text { } 1 \text { } 5 \text { } {\color{red}7} \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \dots \\ 9/19 & = 0.4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } {\color{red}0} \text { } {\color{red}5} \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } 9 \dots \\ 10/19 & = 0.5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } {\color{red}9} \text { } {\color{red}4} \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } 0 \dots \\ 11/19 & = 0.5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } {\color{red}6} \text { } 8 \text { } 4 \text { } {\color{red}2} \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \dots \\ 12/19 & = 0.6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } {\color{red}9} \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } {\color{red}8} \text { } 4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \dots \\ 13/19 & = 0.6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } {\color{red}0} \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } {\color{red}7} \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \dots \\ 14/19 & = 0.7 \text { } 3 \text { } 6 \text { } 8 \text { } {\color{red}4} \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } {\color{red}5} \text { } 7 \text { } 8 \text { } 9 \text { } 4 \dots \\ 15/19 & = 0.7 \text { } 8 \text { } 9 \text { } {\color{red}4} \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } {\color{red}6} \text { } 3 \text { } 1 \text { } 5 \dots \\ 16/19 & = 0.8 \text { } 4 \text { } {\color{red}2} \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } {\color{red}7} \text { } 3 \text { } 6 \dots \\ 17/19 & = 0.8 \text { } {\color{red}9} \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } {\color{red}5} \text { } 7 \dots \\ 18/19 & = 0.{\color{red}9} \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } {\color{red}8} \dots \\ \end{align}</math> The first few prime numbers in decimal whose reciprocals can be used to produce a non-normal, full prime reciprocal magic square of this type are<ref>{{Cite journal |editor-last=Singleton |editor-first=Colin R.J. |title=Solutions to Problems and Conjectures |url=https://www.tib.eu/en/search/id/olc:OLC1606837575/Solutions-to-Problems-and-Conjectures?cHash=e69a0e2935ea6071c21e685db86a7d91 |journal=[[Journal of Recreational Mathematics]] |volume=30 |issue=2 |publisher=Baywood Publishing & Co. |location=Amityville, NY |year=1999 |pages=158β160 }}<br/> :"Fourteen primes less than 1000000 possess this required property <nowiki>[</nowiki>in decimal<nowiki>]</nowiki>".<br /> :Solution to problem 2420, "Only 19?" by M. J. Zerger.</ref> :{19, 383, 32327, 34061, 45341, 61967, 65699, 117541, 158771, 405817, ...} {{OEIS|A072359}}. The smallest prime number to yield such magic square in [[Binary number|binary]] is [[59 (number)|59]] (111011<sub>2</sub>), while in [[Ternary numeral system|ternary]] it is [[223 (number)|223]] (22021<sub>3</sub>); these are listed at [[OEIS:A096339|A096339]], and [[OEIS:A096660|A096660]]. === Variations === A <math>\tfrac {1}{17}</math> prime reciprocal magic square with maximum period of 16 and magic constant of 72 can be constructed where its rows represent ''non-consecutive'' multiples of one-seventeenth:<ref>{{Cite journal |last=Subramani |first=K. |title=On two interesting properties of primes, p, with reciprocals in base 10 having maximum period p β 1. |url=https://jmscm.smartsociety.org/volume1_issue2/Paper4.pdf |journal=J. Of Math. Sci. & Comp. Math. |eissn=2644-3368 |volume=1 |issue=2 |year=2020 |pages=198β200 |publisher=S.M.A.R.T. |location=Auburn, WA |doi=10.15864/jmscm.1204 |s2cid=235037714 }}</ref><ref>{{Cite OEIS |A007450 |Decimal expansion of 1/17. |access-date=2023-11-24 }}</ref> <math display=block> \begin{align} 1/17 & = 0.{\color{blue}0} \text { } 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; 9 \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; {\color{blue}7} \dots \\ 5/17 & = 0.2 \; {\color{blue}9} \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; 0 \; 5 \; 8 \; 8 \; 2 \; {\color{blue}3} \; 5 \dots \\ 8/17 & = 0.4 \; 7 \; {\color{blue}0} \; 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; 9 \; 4 \; 1 \; {\color{blue}1} \; 7 \; 6 \dots \\ 6/17 & = 0.3 \; 5 \; 2 \; {\color{blue}9} \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; 0 \; {\color{blue}5} \; 8 \; 8 \; 2 \dots \\ 13/17 & = 0.7 \; 6 \; 4 \; 7 \; {\color{blue}0} \; 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; {\color{blue}2} \; 9 \; 4 \; 1 \; 1 \dots \\ 14/17 & = 0.8 \; 2 \; 3 \; 5 \; 2 \; {\color{blue}9} \; 4 \; 1 \; 1 \; 7 \; {\color{blue}6} \; 4 \; 7 \; 0 \; 5 \; 8 \dots \\ 2/17 & = 0.1 \; 1 \; 7 \; 6 \; 4 \; 7 \; {\color{blue}0} \; 5 \; 8 \; {\color{blue}8} \; 2 \; 3 \; 5 \; 2 \; 9 \; 4 \dots \\ 10/17 & = 0.5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; {\color{blue}9} \; {\color{blue}4} \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; 0 \dots \\ 16/17 & = 0.9 \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; {\color{blue}7} \; {\color{blue}0} \; 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \dots \\ 12/17 & = 0.7 \; 0 \; 5 \; 8 \; 8 \; 2 \; {\color{blue}3} \; 5 \; 2 \; {\color{blue}9} \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \dots \\ 9/17 & = 0.5 \; 2 \; 9 \; 4 \; 1 \; {\color{blue}1} \; 7 \; 6 \; 4 \; 7 \; {\color{blue}0} \; 5 \; 8 \; 8 \; 2 \; 3 \dots \\ 11/17 & = 0.6 \; 4 \; 7 \; 0 \; {\color{blue}5} \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; {\color{blue}9} \; 4 \; 1 \; 1 \; 7 \dots \\ 4/17 & = 0.2 \; 3 \; 5 \; {\color{blue}2} \; 9 \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; {\color{blue}0} \; 5 \; 8 \; 8 \dots \\ 3/17 & = 0.1 \; 7 \; {\color{blue}6} \; 4 \; 7 \; 0 \; 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; {\color{blue}9} \; 4 \; 1 \dots \\ 15/17 & = 0.8 \; {\color{blue}8} \; 2 \; 3 \; 5 \; 2 \; 9 \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; {\color{blue}0} \; 5 \dots \\ 7/17 & = 0.{\color{blue}4} \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; 0 \; 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; {\color{blue}9} \dots \\ \end{align}</math> As such, this full magic square is the first of its kind in decimal that does not admit a uniform solution where consecutive multiples of <math>1/p</math> fit in respective <math>k</math>βth rows. == See also == *[[Cyclic number]] *[[Reciprocals of primes]] == References == {{Reflist}} {{Magic polygons|collapse}} {{DEFAULTSORT:Prime Reciprocal Magic Square}} [[Category:Magic squares]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite OEIS
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cn
(
edit
)
Template:Magic polygons
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:OEIS
(
edit
)
Template:Reflist
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)
Template:Val
(
edit
)