Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Primitive element theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Field theory theorem}} In [[field theory (mathematics)|field theory]], the '''primitive element theorem''' states that every [[degree of a field extension|finite]] [[separable extension|separable]] [[field extension]] is [[Simple extension|simple]], i.e. generated by a single element. This theorem implies in particular that all [[Algebraic number field|algebraic number fields]] over the rational numbers, and all extensions in which both fields are finite, are simple. == Terminology == Let <math>E/F</math> be a ''[[field extension]]''. An element <math>\alpha\in E</math> is a ''primitive element'' for <math>E/F</math> if <math>E=F(\alpha),</math> i.e. if every element of <math>E</math> can be written as a [[rational function]] in <math>\alpha</math> with coefficients in <math>F</math>. If there exists such a primitive element, then <math>E/F</math> is referred to as a ''[[simple extension]]''. If the field extension <math>E/F</math> has primitive element <math>\alpha</math> and is of finite [[Degree of a field extension|degree]] <math>n = [E:F]</math>, then every element <math>\gamma\in E</math> can be written in the form :<math>\gamma =a_0+a_1{\alpha}+\cdots+a_{n-1}{\alpha}^{n-1}, </math> for unique coefficients <math>a_0,a_1,\ldots,a_{n-1}\in F</math>. That is, the set :<math>\{1,\alpha,\ldots,{\alpha}^{n-1}\}</math> is a [[Basis (linear algebra)|basis]] for ''E'' as a [[vector space]] over ''F''. The degree ''n'' is equal to the degree of the [[irreducible polynomial]] of ''α'' over ''F'', the unique monic <math>f(X)\in F[X] </math> of minimal degree with ''α'' as a root (a linear dependency of <math>\{1,\alpha,\ldots,\alpha^{n-1},\alpha^n\} </math>). If ''L'' is a [[splitting field]] of <math>f(X)</math> containing its ''n'' distinct roots <math>\alpha_1,\ldots,\alpha_n </math>, then there are ''n'' [[Homomorphism|field embeddings]] <math>\sigma_i : F(\alpha)\hookrightarrow L </math> defined by <math>\sigma_i(\alpha)=\alpha_i </math> and <math>\sigma(a)=a </math> for <math>a\in F </math>, and these extend to automorphisms of ''L'' in the [[Galois group]], <math>\sigma_1,\ldots,\sigma_n\in \mathrm{Gal}(L/F) </math>. Indeed, for an extension field with <math>[E: F]=n </math>, an element <math>\alpha</math> is a primitive element if and only if <math>\alpha</math> has ''n'' distinct conjugates <math>\sigma_1(\alpha),\ldots,\sigma_n(\alpha)</math> in some splitting field <math>L \supseteq E</math>. == Example == If one adjoins to the [[rational number]]s <math>F = \mathbb{Q}</math> the two irrational numbers <math>\sqrt{2}</math> and <math>\sqrt{3}</math> to get the extension field <math>E=\mathbb{Q}(\sqrt{2},\sqrt{3})</math> of degree 4, one can show this extension is simple, meaning <math>E=\mathbb{Q}(\alpha)</math> for a single <math>\alpha\in E</math>. Taking <math>\alpha = \sqrt{2} + \sqrt{3} </math>, the powers 1, ''α'', ''α''<sup>2</sup>, ''α''<sup>3</sup> can be expanded as [[linear combination]]s of 1, <math>\sqrt{2}</math>, <math>\sqrt{3}</math>, <math>\sqrt{6}</math> with [[integer]] coefficients. One can solve this [[system of linear equations]] for <math>\sqrt{2}</math> and <math>\sqrt{3}</math> over <math>\mathbb{Q}(\alpha)</math>, to obtain <math>\sqrt{2} = \tfrac12(\alpha^3-9\alpha)</math> and <math>\sqrt{3} = -\tfrac12(\alpha^3-11\alpha)</math>. This shows that ''α'' is indeed a primitive element: :<math>\mathbb{Q}(\sqrt 2, \sqrt 3)=\mathbb{Q}(\sqrt2 + \sqrt3).</math> One may also use the following more general argument.<ref>{{Cite book |last=Lang |first=Serge |url=http://link.springer.com/10.1007/978-1-4613-0041-0 |title=Algebra |date=2002 |publisher=Springer New York |isbn=978-1-4612-6551-1 |series=Graduate Texts in Mathematics |volume=211 |location=New York, NY |pages=243 |doi=10.1007/978-1-4613-0041-0}}</ref> The field <math>E=\Q(\sqrt 2,\sqrt 3) </math> clearly has four field automorphisms <math>\sigma_1,\sigma_2,\sigma_3,\sigma_4: E\to E </math> defined by <math>\sigma_i(\sqrt 2)=\pm\sqrt 2 </math> and <math>\sigma_i(\sqrt 3)=\pm\sqrt 3 </math> for each choice of signs. The minimal polynomial <math>f(X)\in\Q[X] </math> of <math>\alpha=\sqrt 2+\sqrt 3 </math> must have <math>f(\sigma_i(\alpha)) = \sigma_i(f(\alpha)) = 0 </math>, so <math>f(X) </math> must have at least four distinct roots <math>\sigma_i(\alpha)=\pm\sqrt 2 \pm\sqrt 3 </math>. Thus <math>f(X) </math> has degree at least four, and <math>[\Q(\alpha):\Q]\geq 4 </math>, but this is the degree of the entire field, <math>[E:\Q]=4 </math>, so <math>E = \Q(\alpha ) </math>. == Theorem statement == The primitive element theorem states: :Every [[Separable extension|separable]] field extension of finite degree is simple. This theorem applies to [[algebraic number field]]s, i.e. finite extensions of the rational numbers '''Q''', since '''Q''' has [[characteristic (algebra)|characteristic]] 0 and therefore every finite extension over '''Q''' is separable. Using the [[fundamental theorem of Galois theory]], the former theorem immediately follows from [[Steinitz's theorem (field theory)|Steinitz's theorem]]. == Characteristic ''p'' == For a non-separable extension <math>E/F</math> of [[characteristic p]], there is nevertheless a primitive element provided the degree [''E'' : ''F''] is ''p:'' indeed, there can be no non-trivial intermediate subfields since their degrees would be factors of the prime ''p''. When [''E'' : ''F''] = ''p''<sup>2</sup>, there may not be a primitive element (in which case there are infinitely many intermediate fields by [[Steinitz's theorem (field theory)|Steinitz's theorem]]). The simplest example is <math>E=\mathbb{F}_p(T,U)</math>, the field of rational functions in two indeterminates ''T'' and ''U'' over the [[finite field]] with ''p'' elements, and <math>F=\mathbb{F}_p(T^p,U^p)</math>. In fact, for any <math>\alpha=g(T,U) </math> in <math>E \setminus F</math>, the [[Frobenius endomorphism]] shows that the element <math>\alpha^p</math> lies in ''F'' , so ''α'' is a root of <math>f(X)=X^p-\alpha^p\in F[X]</math>, and ''α'' cannot be a primitive element (of degree ''p''<sup>2</sup> over ''F''), but instead ''F''(''α'') is a non-trivial intermediate field. == Proof == Suppose first that <math>F</math> is infinite. By induction, it suffices to prove that any finite extension <math>E=F(\beta,\gamma) </math> is simple. For <math>c\in F</math>, suppose <math>\alpha = \beta+ c\gamma </math> fails to be a primitive element, <math>F(\alpha)\subsetneq F(\beta,\gamma)</math>. Then <math>\gamma\notin F(\alpha)</math>, since otherwise <math>\beta = \alpha-c\gamma\in F(\alpha)=F(\beta,\gamma)</math>. Consider the minimal polynomials of <math>\beta,\gamma </math> over <math>F(\alpha) </math>, respectively <math>f(X), g(X) \in F(\alpha)[X]</math>, and take a splitting field <math>L </math> containing all roots <math>\beta,\beta',\ldots</math> of <math>f(X) </math> and <math>\gamma,\gamma',\ldots </math> of <math>g(X) </math>. Since <math>\gamma\notin F(\alpha)</math>, there is another root <math>\gamma'\neq \gamma</math>, and a field automorphism <math>\sigma:L\to L </math> which fixes <math>F(\alpha) </math> and takes <math>\sigma(\gamma)=\gamma' </math>. We then have <math>\sigma(\alpha) =\alpha </math>, and: :<math>\beta + c \gamma = \sigma(\beta + c \gamma) = \sigma(\beta) + c \, \sigma(\gamma) </math>, and therefore <math>c = \frac{\sigma(\beta) - \beta}{\gamma - \sigma(\gamma)}</math>. Since there are only finitely many possibilities for <math>\sigma(\beta)=\beta'</math> and <math>\sigma(\gamma)=\gamma'</math>, only finitely many <math>c\in F</math> fail to give a primitive element <math>\alpha=\beta+c\gamma</math>. All other values give <math>F(\alpha)=F(\beta,\gamma) </math>. For the case where <math>F</math> is finite, we simply take <math>\alpha</math> to be a [[Primitive root modulo n|primitive root]] of the finite extension field <math>E </math>. == History == In his First Memoir of 1831, published in 1846,<ref>{{Cite book|last=Neumann|first=Peter M.|url=https://www.worldcat.org/oclc/757486602|title=The mathematical writings of Évariste Galois|date=2011|publisher=European Mathematical Society|isbn=978-3-03719-104-0|location=Zürich|oclc=757486602}}</ref> [[Évariste Galois]] sketched a proof of the classical primitive element theorem in the case of a [[splitting field]] of a polynomial over the rational numbers. The gaps in his sketch could easily be filled<ref>{{Cite book|last=Tignol|first=Jean-Pierre | author-link=Jean-Pierre Tignol |url=https://www.worldscientific.com/worldscibooks/10.1142/9719|title=Galois' Theory of Algebraic Equations|date=February 2016|publisher=WORLD SCIENTIFIC|isbn=978-981-4704-69-4|edition=2|location=|pages=231|language=en|doi=10.1142/9719|oclc=1020698655}}</ref> (as remarked by the referee [[Siméon Denis Poisson|Poisson]]) by exploiting a theorem<ref>{{Cite book|last=Tignol|first=Jean-Pierre|url=https://www.worldscientific.com/worldscibooks/10.1142/9719|title=Galois' Theory of Algebraic Equations|date=February 2016|publisher=WORLD SCIENTIFIC|isbn=978-981-4704-69-4|edition=2|pages=135|language=en|doi=10.1142/9719|oclc=1020698655}}</ref><ref name=":1">{{Cite book|last=Cox|first=David A.|url=https://www.worldcat.org/oclc/784952441|title=Galois theory|date=2012|publisher=John Wiley & Sons|isbn=978-1-118-21845-7|edition=2nd|location=Hoboken, NJ|pages=322|oclc=784952441}}</ref> of [[Joseph-Louis Lagrange|Lagrange]] from 1771, which Galois certainly knew. It is likely that Lagrange had already been aware of the primitive element theorem for splitting fields.<ref name=":1" /> Galois then used this theorem heavily in his development of the [[Galois group]]. Since then it has been used in the development of [[Galois theory]] and the [[fundamental theorem of Galois theory]]. The primitive element theorem was proved in its modern form by [[Ernst Steinitz]], in an influential article on [[Field theory (mathematics)|field theory]] in 1910, which also contains [[Steinitz's theorem (field theory)|Steinitz's theorem]];<ref name=":0">{{Cite journal|last=Steinitz|first=Ernst|date=1910|title=Algebraische Theorie der Körper.|url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0137?tify=%7B%22view%22:%22info%22,%22pages%22:%5B171%5D%7D|journal=Journal für die reine und angewandte Mathematik|language=de|volume=1910|issue=137 |pages=167–309|doi=10.1515/crll.1910.137.167|s2cid=120807300 |issn=1435-5345|url-access=subscription}}</ref> Steinitz called the "classical" result ''Theorem of the primitive elements'' and his modern version ''Theorem of the intermediate fields''. [[Emil Artin]] reformulated Galois theory in the 1930s without relying on primitive elements.<ref>{{cite book|last=Kleiner|first=Israel|title=A History of Abstract Algebra|date=2007|publisher=Springer|isbn=978-0-8176-4685-1|pages=64|chapter=§4.1 Galois theory|chapter-url=https://books.google.com/books?id=udj-1UuaOiIC&pg=PA64}}</ref><ref>{{Cite book|last=Artin|first=Emil|url=https://www.worldcat.org/oclc/38144376|title=Galois theory|date=1998|publisher=Dover Publications|others=Arthur N. Milgram|isbn=0-486-62342-4|edition=Republication of the 1944 revised edition of the 1942 first publication by The University Notre Dame Press|location=Mineola, N.Y.|oclc=38144376}}</ref> ==References== {{Reflist}} ==External links== * [http://www.jmilne.org/math/CourseNotes/ft.html J. Milne's course notes on fields and Galois theory] * [http://www.mathreference.com/fld-sep,pet.html The primitive element theorem at mathreference.com] * [http://planetmath.org/ProofOfPrimitiveElementTheorem The primitive element theorem at planetmath.org] * [http://www.math.cornell.edu/~kbrown/6310/primitive.pdf The primitive element theorem on Ken Brown's website (pdf file)] [[Category:Field (mathematics)]] [[Category:Theorems in abstract algebra]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)