Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Proca action
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Action of a massive abelian gauge field}} {{Quantum field theory|cTopic=Equations}} In [[physics]], specifically [[field theory (physics)|field theory]] and [[particle physics]], the '''Proca action''' describes a [[mass]]ive [[Spin (physics)|spin]]-1 [[quantum field|field]] of mass ''m'' in [[Minkowski spacetime]]. The corresponding equation is a [[relativistic wave equation]] called the '''Proca equation'''.<ref>Particle Physics (2nd Edition), B.R. Martin, G. Shaw, Manchester Physics, John Wiley & Sons, 2008, {{ISBN|978-0-470-03294-7}}</ref> The Proca action and equation are named after Romanian physicist [[Alexandru Proca]]. The Proca equation is involved in the [[Standard Model]] and describes there the three massive [[vector boson]]s, i.e. the Z and W bosons. This article uses the (+−−−) [[metric signature]] and [[tensor index notation]] in the language of [[4-vector]]s. ==Lagrangian density== The field involved is a complex [[4-potential]] <math> B^\mu = \left (\frac{\phi}{c}, \mathbf{A} \right)</math>, where <math> \phi </math> is a kind of generalized [[electric potential]] and <math> \mathbf{A} </math> is a generalized [[Magnetic vector potential|magnetic potential]]. The field <math>B^\mu</math> transforms like a complex [[four-vector]]. The [[Lagrangian (field theory)|Lagrangian density]] is given by:<ref>W. Greiner, "Relativistic quantum mechanics", Springer, p. 359, {{ISBN|3-540-67457-8}}</ref> :<math>\mathcal{L}=-\frac{1}{2}(\partial_\mu B_\nu^*-\partial_\nu B_\mu^*)(\partial^\mu B^\nu-\partial^\nu B^\mu)+\frac{m^2 c^2}{\hbar^2}B_\nu^* B^\nu.</math> where <math> c </math> is the [[speed of light|speed of light in vacuum]], <math> \hbar </math> is the [[reduced Planck constant]], and <math> \partial_{\mu}</math> is the [[4-gradient]]. ==Equation== The [[Euler–Lagrange equation]] of motion for this case, also called the '''Proca equation''', is: :<math>\partial_\mu \Bigl(\ \partial^\mu B^\nu - \partial^\nu B^\mu\ \Bigr) + \left( \frac{\ m\ c\ }{\hbar} \right)^2 B^\nu = 0</math> which is conjugate equivalent to<ref>{{cite encyclopedia |editor-first=C.B. |editor-last=Parker |year=1994 |title=conjugate equivalence |encyclopedia=McGraw Hill Encyclopaedia of Physics |edition=2nd |publisher=McGraw Hill |place=New York, NY |ISBN=0-07-051400-3 }}</ref> :<math>\left[\ \partial_\mu \partial^\mu + \left( \frac{\ m\ c\ }{ \hbar } \right)^2\ \right]B^\nu = 0 </math> and with <math>\ m = 0\ </math> (the massless case) reduces to :<math>\ \partial_\nu B^\nu = 0\ ,</math> which may be called a generalized [[Lorenz gauge condition]]. For non-zero sources, with all fundamental constants included, the field equation is: :<math>c\ \mu_0\ j^\nu \;=\; \left[\ g^{\mu \nu } \left( \partial_\sigma \partial^\sigma + \frac{\ m^2\ c^2\ }{\ \hbar^2 } \right) - \partial^\nu \partial^\mu\ \right] B_\mu\ </math> When <math>\ m = 0\ ,</math> the source free equations reduce to [[Maxwell's equations]] without charge or current, and the above reduces to Maxwell's charge equation. This Proca field equation is closely related to the [[Klein–Gordon equation]], because it is second order in space and time. In the [[vector calculus]] notation, the source free equations are: :<math>\ \Box\ \phi - \frac{\ \partial }{\partial t} \left(\frac{ 1 }{\ c^2} \frac{\ \partial \phi\ }{ \partial t } + \nabla\cdot\mathbf{A} \right) ~=~ -\left(\frac{\ m\ c\ }{\hbar}\right)^2 \phi\ </math> :<math>\ \Box\ \mathbf{A} + \nabla \left( \frac{ 1 }{\ c^2 }\ \frac{\ \partial \phi\ }{\partial t} + \nabla \cdot \mathbf{A} \right) ~=~ -\left(\frac{\ m\ c\ }{ \hbar }\right)^2 \mathbf{A}\ </math> and <math>\ \Box\ </math> is the [[D'Alembert operator]]. ==Gauge fixing== The Proca action is the [[gauge fixing|gauge-fixed]] version of the [[Stueckelberg action]] via the [[Higgs mechanism]]. Quantizing the Proca action requires the use of [[second class constraints]]. If <math>\ m \neq 0\ ,</math> they are not invariant under the gauge transformations of electromagnetism :<math>\ B^\mu \mapsto B^\mu - \partial^\mu f\ </math> where <math>\ f\ </math> is an arbitrary function. ==See also== * [[Electromagnetic field]] * [[Photon]] * [[Quantum electrodynamics]] * [[Quantum gravity]] * [[Vector boson]] * [[Relativistic wave equations]] * [[Klein-Gordon equation]] (spin 0) * [[Dirac equation]] (spin 1/2) ==References== {{reflist}} == Further reading == * Supersymmetry Demystified, P. Labelle, McGraw–Hill (USA), 2010, {{ISBN|978-0-07-163641-4}} * Quantum Field Theory, D. McMahon, Mc Graw Hill (USA), 2008, {{ISBN|978-0-07-154382-8}} * Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, {{ISBN|0-07-145546 9}} {{Quantum field theories}} {{DEFAULTSORT:Proca Action}} [[Category:Gauge theories]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite encyclopedia
(
edit
)
Template:ISBN
(
edit
)
Template:Quantum field theories
(
edit
)
Template:Quantum field theory
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)