Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Propagation of uncertainty
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Effect of variables' uncertainties on the uncertainty of a function based on them}} {{For|the propagation of uncertainty through time|Chaos theory#Sensitivity to initial conditions}} In [[statistics]], '''propagation of uncertainty''' (or '''propagation of error''') is the effect of [[Variable (mathematics)|variables]]' [[uncertainty|uncertainties]] (or [[Errors and residuals in statistics|errors]], more specifically [[random error]]s) on the uncertainty of a [[function (mathematics)|function]] based on them. When the variables are the values of experimental measurements they have [[Observational error|uncertainties due to measurement limitations]] (e.g., instrument [[Accuracy and precision|precision]]) which propagate due to the combination of variables in the function. The uncertainty ''u'' can be expressed in a number of ways. It may be defined by the [[absolute error]] {{math|Δ''x''}}. Uncertainties can also be defined by the [[relative error]] {{math|(Δ''x'')/''x''}}, which is usually written as a percentage. Most commonly, the uncertainty on a quantity is quantified in terms of the [[standard deviation]], {{mvar|σ}}, which is the positive square root of the [[variance]]. The value of a quantity and its error are then expressed as an interval {{math|''x'' ± ''u''}}. However, the most general way of characterizing uncertainty is by specifying its [[probability distribution]]. If the [[probability distribution]] of the variable is known or can be assumed, in theory it is possible to get any of its statistics. In particular, it is possible to derive [[confidence limits]] to describe the region within which the true value of the variable may be found. For example, the 68% confidence limits for a one-dimensional variable belonging to a [[normal distribution]] are approximately ± one standard deviation {{math|''σ''}} from the central value {{math|''x''}}, which means that the region {{math|''x'' ± ''σ''}} will cover the true value in roughly 68% of cases. If the uncertainties are [[correlated]] then [[covariance]] must be taken into account. Correlation can arise from two different sources. First, the ''measurement errors'' may be correlated. Second, when the underlying values are correlated across a population, the ''uncertainties in the group averages'' will be correlated.<ref>{{cite web| last1=Kirchner | first1=James | title=Data Analysis Toolkit #5: Uncertainty Analysis and Error Propagation | url=http://seismo.berkeley.edu/~kirchner/eps_120/Toolkits/Toolkit_05.pdf|website=Berkeley Seismology Laboratory|publisher=University of California | access-date=22 April 2016}}</ref> In a general context where a nonlinear function modifies the uncertain parameters (correlated or not), the standard tools to propagate uncertainty, and infer resulting quantity probability distribution/statistics, are sampling techniques from the [[Monte Carlo method]] family.<ref name="kr11">{{cite book|author-last1=Kroese |author-first1=D. P. |author-last2=Taimre |author-first2=T. |author-last3=Botev |author-first3=Z. I. |title=Handbook of Monte Carlo Methods |year=2011 |publisher=John Wiley & Sons}}</ref> For very large datasets or complex functions, the calculation of the error propagation may be very expensive so that a [[surrogate model]]<ref>{{Cite journal|last1=Ranftl|first1=Sascha|last2=von der Linden|first2=Wolfgang|date=2021-11-13|title=Bayesian Surrogate Analysis and Uncertainty Propagation|journal=Physical Sciences Forum|volume=3|issue=1|pages=6|doi=10.3390/psf2021003006|issn=2673-9984|doi-access=free |arxiv=2101.04038}}</ref> or a [[parallel computing]] strategy<ref>{{cite journal|author-last1=Atanassova |author-first1=E. |author-last2=Gurov |author-first2=T. |author-last3=Karaivanova |author-first3=A. |author-last4=Ivanovska |author-first4=S. |author-last5=Durchova |author-first5=M. |author-last6=Dimitrov |author-first6=D. |year=2016 |title=On the parallelization approaches for Intel MIC architecture |journal=AIP Conference Proceedings |volume=1773 |issue=1 |pages=070001 |doi=10.1063/1.4964983 |bibcode=2016AIPC.1773g0001A}}</ref><ref>{{cite journal|author-last1=Cunha Jr |author-first1=A. |author-last2=Nasser |author-first2=R. |author-last3=Sampaio |author-first3=R. |author-last4=Lopes |author-first4=H. |author-last5=Breitman |author-first5=K. |year=2014 |title=Uncertainty quantification through the Monte Carlo method in a cloud computing setting |journal=Computer Physics Communications |volume=185 |issue=5 |pages=1355–1363 |doi=10.1016/j.cpc.2014.01.006 |arxiv=2105.09512 |bibcode=2014CoPhC.185.1355C |s2cid=32376269}}</ref><ref>{{cite journal|author-last1=Lin |author-first1=Y. |author-last2=Wang |author-first2=F. |author-last3=Liu |author-first3=B. |year=2018 |title=Random number generators for large-scale parallel Monte Carlo simulations on FPGA |journal = Journal of Computational Physics |volume=360 |pages=93–103 |doi=10.1016/j.jcp.2018.01.029 |bibcode=2018JCoPh.360...93L}}</ref> may be necessary. In some particular cases, the uncertainty propagation calculation can be done through simplistic algebraic procedures. Some of these scenarios are described below. ==Linear combinations== Let <math>\{f_k(x_1, x_2, \dots, x_n)\}</math> be a set of ''m'' functions, which are linear combinations of <math>n</math> variables <math>x_1, x_2, \dots, x_n</math> with combination coefficients <math>A_{k1}, A_{k2}, \dots,A_{kn}, (k = 1, \dots, m)</math>: <math display="block">f_k = \sum_{i=1}^n A_{ki} x_i,</math> or in matrix notation, <math display="block">\mathbf{f} = \mathbf{A} \mathbf{x}.</math> Also let the [[variance–covariance matrix]] of {{math|1=''x'' = (''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>)}} be denoted by <math>\boldsymbol\Sigma^x</math> and let the mean value be denoted by <math>\boldsymbol{\mu}</math>: <math display="block">\begin{align} \boldsymbol\Sigma^x = \operatorname{E}[(\mathbf{x}-\boldsymbol\mu)\otimes (\mathbf{x}-\boldsymbol\mu)] &= \begin{pmatrix} \sigma^2_1 & \sigma_{12} & \sigma_{13} & \cdots \\ \sigma_{21} & \sigma^2_2 & \sigma_{23} & \cdots\\ \sigma_{31} & \sigma_{32} & \sigma^2_3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\[1ex] &= \begin{pmatrix} {\Sigma}^x_{11} & {\Sigma}^x_{12} & {\Sigma}^x_{13} & \cdots \\ {\Sigma}^x_{21} & {\Sigma}^x_{22} & {\Sigma}^x_{23} & \cdots \\ {\Sigma}^x_{31} & {\Sigma}^x_{32} & {\Sigma}^x_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}. \end{align} </math> <math>\otimes</math> is the [[outer product]]. Then, the variance–covariance matrix <math>\boldsymbol\Sigma^f</math> of ''f'' is given by <math display="block">\begin{align} \boldsymbol\Sigma^f &= \operatorname{E}\left[(\mathbf{f} - \operatorname{E}[\mathbf{f}]) \otimes (\mathbf{f} - \operatorname{E}[\mathbf{f}])\right] = \operatorname{E}\left[\mathbf{A}(\mathbf{x}-\boldsymbol\mu) \otimes \mathbf{A}(\mathbf{x}-\boldsymbol\mu)\right] \\[1ex] &= \mathbf{A} \operatorname{E}\left[(\mathbf{x}-\boldsymbol\mu) \otimes (\mathbf{x}-\boldsymbol\mu)\right] \mathbf{A}^\mathrm{T} = \mathbf{A} \boldsymbol\Sigma^x \mathbf{A}^\mathrm{T}. \end{align}</math> In component notation, the equation <math display="block">\boldsymbol\Sigma^f = \mathbf{A} \boldsymbol\Sigma^x \mathbf{A}^\mathrm{T}</math> reads <math display="block">\Sigma^f_{ij} = \sum_k^n \sum_l^n A_{ik} {\Sigma}^x_{kl} A_{jl}.</math> This is the most general expression for the propagation of error from one set of variables onto another. When the errors on ''x'' are uncorrelated, the general expression simplifies to <math display="block">\Sigma^f_{ij} = \sum_k^n A_{ik} \Sigma^x_k A_{jk},</math> where <math>\Sigma^x_k = \sigma^2_{x_k}</math> is the variance of ''k''-th element of the ''x'' vector. Note that even though the errors on ''x'' may be uncorrelated, the errors on ''f'' are in general correlated; in other words, even if <math>\boldsymbol\Sigma^x</math> is a diagonal matrix, <math>\boldsymbol\Sigma^f</math> is in general a full matrix. The general expressions for a scalar-valued function ''f'' are a little simpler (here '''a''' is a row vector): <math display="block">f = \sum_i^n a_i x_i = \mathbf{a x},</math> <math display="block">\sigma^2_f = \sum_i^n \sum_j^n a_i \Sigma^x_{ij} a_j = \mathbf{a} \boldsymbol\Sigma^x \mathbf{a}^\mathrm{T}.</math> Each covariance term <math>\sigma_{ij}</math> can be expressed in terms of the [[Pearson product-moment correlation coefficient|correlation coefficient]] <math>\rho_{ij}</math> by <math>\sigma_{ij} = \rho_{ij} \sigma_i \sigma_j</math>, so that an alternative expression for the variance of ''f'' is <math display="block">\sigma^2_f = \sum_i^n a_i^2 \sigma^2_i + \sum_i^n \sum_{j (j \ne i)}^n a_i a_j \rho_{ij} \sigma_i \sigma_j.</math> In the case that the variables in ''x'' are uncorrelated, this simplifies further to <math display="block">\sigma^2_f = \sum_i^n a_i^2 \sigma^2_i.</math> In the simple case of identical coefficients and variances, we find <math display="block">\sigma_f = \sqrt{n}\, |a| \sigma.</math> For the arithmetic mean, <math>a=1/n</math>, the result is the [[standard error of the mean]]: <math display="block">\sigma_f = \frac{\sigma} {\sqrt{n}}.</math> == Non-linear combinations == {{See also|Taylor expansions for the moments of functions of random variables}} When ''f'' is a set of non-linear combination of the variables ''x'', an [[interval propagation]] could be performed in order to compute intervals which contain all consistent values for the variables. In a probabilistic approach, the function ''f'' must usually be linearised by approximation to a first-order [[Taylor series]] expansion, though in some cases, exact formulae can be derived that do not depend on the expansion as is the case for the exact variance of products.<ref name="Goodman1960">{{Cite journal | last = Goodman | first= Leo | author-link = Leo Goodman | title = On the Exact Variance of Products | journal = Journal of the American Statistical Association | year = 1960 | volume = 55 | issue = 292 | pages = 708–713 | doi = 10.2307/2281592 | jstor=2281592 }}</ref> The Taylor expansion would be: <math display="block">f_k \approx f^0_k+ \sum_i^n \frac{\partial f_k}{\partial {x_i}} x_i </math> where <math>\partial f_k/\partial x_i</math> denotes the [[partial derivative]] of ''f<sub>k</sub>'' with respect to the ''i''-th variable, evaluated at the mean value of all components of vector ''x''. Or in [[matrix notation]], <math display="block">\mathrm{f} \approx \mathrm{f}^0 + \mathrm{J} \mathrm{x}\,</math> where J is the [[Jacobian matrix]]. Since f<sup>0</sup> is a constant it does not contribute to the error on f. Therefore, the propagation of error follows the linear case, above, but replacing the linear coefficients, ''A<sub>ki</sub>'' and ''A<sub>kj</sub>'' by the partial derivatives, <math>\frac{\partial f_k}{\partial x_i}</math> and <math>\frac{\partial f_k}{\partial x_j}</math>. In matrix notation,<ref>Ochoa1, Benjamin; Belongie, Serge [http://vision.ucsd.edu/sites/default/files/ochoa06.pdf "Covariance Propagation for Guided Matching"] {{Webarchive|url=https://web.archive.org/web/20110720080130/http://vision.ucsd.edu/sites/default/files/ochoa06.pdf |date=2011-07-20 }}</ref> <math display="block">\mathrm{\Sigma}^\mathrm{f} = \mathrm{J} \mathrm{\Sigma}^\mathrm{x} \mathrm{J}^\top.</math> That is, the Jacobian of the function is used to transform the rows and columns of the variance-covariance matrix of the argument. Note this is equivalent to the matrix expression for the linear case with <math>\mathrm{J = A}</math>. === Simplification === Neglecting correlations or assuming independent variables yields a common formula among engineers and experimental scientists to calculate error propagation, the variance formula:<ref>{{cite journal|last=Ku|first=H. H.|date=October 1966 |title=Notes on the use of propagation of error formulas|url=http://nistdigitalarchives.contentdm.oclc.org/cdm/compoundobject/collection/p16009coll6/id/99848/rec/1|journal=Journal of Research of the National Bureau of Standards | volume=70C|issue=4|page=262|doi=10.6028/jres.070c.025|issn=0022-4316|access-date=3 October 2012|doi-access=free}}</ref> <math display="block">s_f = \sqrt{ \left(\frac{\partial f}{\partial x}\right)^2 s_x^2 + \left(\frac{\partial f}{\partial y} \right)^2 s_y^2 + \left(\frac{\partial f}{\partial z} \right)^2 s_z^2 + \cdots}</math> where <math>s_f</math> represents the standard deviation of the function <math>f</math>, <math>s_x</math> represents the standard deviation of <math>x</math>, <math>s_y</math> represents the standard deviation of <math>y</math>, and so forth. This formula is based on the linear characteristics of the gradient of <math>f</math> and therefore it is a good estimation for the standard deviation of <math>f</math> as long as <math>s_x, s_y, s_z,\ldots</math> are small enough. Specifically, the linear approximation of <math>f</math> has to be close to <math>f</math> inside a neighbourhood of radius <math>s_x, s_y, s_z,\ldots</math>.<ref>{{Cite book |last=Clifford |first=A. A. |title=Multivariate error analysis: a handbook of error propagation and calculation in many-parameter systems |publisher=John Wiley & Sons |year=1973 |isbn=978-0470160558 }}{{page needed|date=October 2012}}</ref> === Example === Any non-linear differentiable function, <math>f(a,b)</math>, of two variables, <math>a</math> and <math>b</math>, can be expanded as <math display="block">f\approx f^0+\frac{\partial f}{\partial a}a+\frac{\partial f}{\partial b}b.</math> If we take the variance on both sides and use the formula<ref>{{Cite web| last=Soch|first=Joram| date=2020-07-07| title=Variance of the linear combination of two random variables|url=https://statproofbook.github.io/P/var-lincomb.html| access-date=2022-01-29| website=The Book of Statistical Proofs|language=en}}</ref> for the variance of a linear combination of variables <math display="block">\operatorname{Var}(aX + bY) = a^2\operatorname{Var}(X) + b^2\operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y),</math> then we obtain <math display="block">\sigma^2_f\approx\left| \frac{\partial f}{\partial a}\right| ^2\sigma^2_a+\left| \frac{\partial f}{\partial b}\right|^2\sigma^2_b+2\frac{\partial f}{\partial a}\frac{\partial f} {\partial b}\sigma_{ab},</math> where <math>\sigma_{f}</math> is the standard deviation of the function <math>f</math>, <math>\sigma_{a}</math> is the standard deviation of <math>a</math>, <math>\sigma_{b}</math> is the standard deviation of <math>b</math> and <math>\sigma_{ab} = \sigma_{a}\sigma_{b} \rho_{ab}</math> is the covariance between <math>a</math> and <math>b</math>. In the particular case that {{nowrap|<math>f = ab</math>,}} {{nowrap|<math>\frac{\partial f}{\partial a} = b</math>,}} {{nowrap|<math>\frac{\partial f}{\partial b} = a</math>.}} Then <math display="block">\sigma^2_f \approx b^2\sigma^2_a+a^2 \sigma_b^2+2ab\,\sigma_{ab}</math> or <math display="block">\left(\frac{\sigma_f}{f}\right)^2 \approx \left(\frac{\sigma_a}{a} \right)^2 + \left(\frac{\sigma_b}{b}\right)^2 + 2\left(\frac{\sigma_a}{a}\right)\left(\frac{\sigma_b}{b}\right)\rho_{ab}</math> where <math>\rho_{ab}</math> is the correlation between <math>a</math> and <math>b</math>. When the variables <math>a</math> and <math>b</math> are uncorrelated, <math>\rho_{ab}=0</math>. Then <math display="block">\left(\frac{\sigma_f}{f}\right)^2 \approx \left(\frac{\sigma_a}{a} \right)^2 + \left(\frac{\sigma_b}{b}\right)^2.</math> ===Caveats and warnings=== Error estimates for non-linear functions are [[Bias of an estimator|biased]] on account of using a truncated series expansion. The extent of this bias depends on the nature of the function. For example, the bias on the error calculated for log(1+''x'') increases as ''x'' increases, since the expansion to ''x'' is a good approximation only when ''x'' is near zero. For highly non-linear functions, there exist five categories of probabilistic approaches for uncertainty propagation;<ref>{{cite journal |first1=S. H. |last1=Lee |first2=W. |last2=Chen |title=A comparative study of uncertainty propagation methods for black-box-type problems |journal=Structural and Multidisciplinary Optimization |volume=37 |issue=3 |year=2009 |pages=239–253 |doi=10.1007/s00158-008-0234-7 |s2cid=119988015 }}</ref> see [[Uncertainty quantification#Forward propagation|Uncertainty quantification]] for details. ====Reciprocal and shifted reciprocal==== {{main|Reciprocal normal distribution}} In the special case of the inverse or reciprocal <math>1/B</math>, where <math>B=N(0,1)</math> follows a [[standard normal distribution]], the resulting distribution is a reciprocal standard normal distribution, and there is no definable variance.<ref name=Johnson>{{cite book | last1 = Johnson | first1 = Norman L. | last2 = Kotz | first2 = Samuel | last3 = Balakrishnan | first3 = Narayanaswamy | title = Continuous Univariate Distributions, Volume 1 | year = 1994 | publisher = Wiley | isbn=0-471-58495-9 | pages = 171 }}</ref> However, in the slightly more general case of a shifted reciprocal function <math>1/(p-B)</math> for <math>B=N(\mu,\sigma)</math> following a general normal distribution, then mean and variance statistics do exist in a [[principal value]] sense, if the difference between the pole <math>p</math> and the mean <math>\mu</math> is real-valued.<ref name=lecomte2013exact>{{Cite journal | last1= Lecomte | first1 = Christophe | title = Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems | journal = Journal of Sound and Vibration | volume = 332 | issue = 11 | date = May 2013 | pages = 2750–2776 | doi = 10.1016/j.jsv.2012.12.009 | bibcode = 2013JSV...332.2750L }}</ref> ====Ratios==== {{main|Normal ratio distribution}} Ratios are also problematic; normal approximations exist under certain conditions. ==Example formulae== This table shows the variances and standard deviations of simple functions of the real variables <math>A, B</math> with standard deviations <math>\sigma_A, \sigma_B,</math> [[Covariance and correlation|covariance]] <math>\sigma_{AB} = \rho_{AB} \sigma_A \sigma_B,</math> and correlation <math>\rho_{AB}.</math> The real-valued coefficients <math>a</math> and <math>b</math> are assumed exactly known (deterministic), i.e., <math>\sigma_a = \sigma_b = 0.</math> In the right-hand columns of the table, <math>A</math> and <math>B</math> are [[expected value|expectation values]], and <math>f</math> is the value of the function calculated at those values. {| class="wikitable" ! Function !! Variance !! Standard deviation |- | <math>f = aA\,</math> | <math>\sigma_f^2 = a^2\sigma_A^2</math> | <math>\sigma_f = |a|\sigma_A</math> |- | <math>f = A + B</math> | <math>\sigma_f^2 = \sigma_A^2 + \sigma_B^2 + 2\sigma_{AB}</math> | <math>\sigma_f = \sqrt{\sigma_A^2 + \sigma_B^2 + 2\sigma_{AB}}</math> |- | <math>f = A - B</math> | <math>\sigma_f^2 = \sigma_A^2 + \sigma_B^2 - 2\sigma_{AB}</math> | <math>\sigma_f = \sqrt{\sigma_A^2 + \sigma_B^2 - 2\sigma_{AB}}</math> |- | <math>f = aA + bB</math> | <math>\sigma_f^2 = a^2\sigma_A^2 + b^2\sigma_B^2 + 2ab\,\sigma_{AB}</math> | <math>\sigma_f = \sqrt{a^2\sigma_A^2 + b^2\sigma_B^2 + 2ab\,\sigma_{AB}}</math> |- | <math>f = aA - bB</math> | <math>\sigma_f^2 = a^2\sigma_A^2 + b^2\sigma_B^2 - 2ab\,\sigma_{AB}</math> | <math>\sigma_f = \sqrt{a^2\sigma_A^2 + b^2\sigma_B^2 - 2ab\,\sigma_{AB}}</math> |- | <math>f = AB</math> | <math>\sigma_f^2 \approx f^2 \left[\left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 + 2\frac{\sigma_{AB}}{AB} \right]</math><ref>{{cite web |url=http://ipl.physics.harvard.edu/wp-uploads/2013/03/PS3_Error_Propagation_sp13.pdf |title=A Summary of Error Propagation |page=2 |access-date=2016-04-04 |archive-url = https://web.archive.org/web/20161213135602/http://ipl.physics.harvard.edu/wp-uploads/2013/03/PS3_Error_Propagation_sp13.pdf |archive-date=2016-12-13 |url-status=dead }}</ref><ref>{{cite web |url=http://web.mit.edu/fluids-modules/www/exper_techniques/2.Propagation_of_Uncertaint.pdf |title=Propagation of Uncertainty through Mathematical Operations |page=5 |access-date=2016-04-04}}</ref> | <math>\sigma_f \approx \left| f \right| \sqrt{ \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 + 2\frac{\sigma_{AB}}{AB} }</math> |- | <math>f = \frac{A}{B}</math> | <math>\sigma_f^2 \approx f^2 \left[\left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 - 2\frac{\sigma_{AB}}{AB} \right]</math><ref>{{cite web |url=http://www.sagepub.com/upm-data/6427_Chapter_4__Lee_%28Analyzing%29_I_PDF_6.pdf |title=Strategies for Variance Estimation |page=37 |access-date=2013-01-18}}</ref> | <math>\sigma_f \approx \left| f \right| \sqrt{ \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 - 2\frac{\sigma_{AB}}{AB} }</math> |- | <math>f = \frac{A}{A+B}</math> | <math>\sigma_f^2 \approx \frac{f^2}{\left(A+B\right)^2} \left(\frac{B^2}{A^2}\sigma_A^2 +\sigma_B^2 - 2\frac{B}{A} \sigma_{AB} \right)</math> | <math>\sigma_f \approx \left|\frac{f}{A+B}\right| \sqrt{\frac{B^2}{A^2}\sigma_A^2 +\sigma_B^2 - 2\frac{B}{A} \sigma_{AB} }</math> |- | <math>f = a A^b</math> | <math>\sigma_f^2 \approx \left( {a}{b}{A}^{b-1}{\sigma_A} \right)^2 = \left( \frac{{f}{b}{\sigma_A}}{A} \right)^2 </math> | <math>\sigma_f \approx \left| {a}{b}{A}^{b-1}{\sigma_A} \right| = \left| \frac{{f}{b}{\sigma_A}}{A} \right| </math> |- | <math>f = a \ln(bA)</math> | <math>\sigma_f^2 \approx \left(a \frac{\sigma_A}{A} \right)^2</math><ref name=harris2003>{{citation |first1=Daniel C. |last1=Harris | title=Quantitative chemical analysis |edition=6th |publisher=Macmillan |year=2003 |isbn=978-0-7167-4464-1 |page=56 |url=https://books.google.com/books?id=csTsQr-v0d0C&pg=PA56 }}</ref> | <math>\sigma_f \approx \left| a \frac{\sigma_A}{A}\right|</math> |- | <math>f = a \log_{10}(bA)</math> | <math>\sigma_f^2 \approx \left(a \frac{\sigma_A}{A \ln(10)} \right)^2</math><ref name=harris2003/> | <math>\sigma_f \approx \left| a \frac{\sigma_A}{A \ln(10)} \right|</math> |- | <math>f = a e^{bA}</math> | <math>\sigma_f^2 \approx f^2 \left( b\sigma_A \right)^2</math><ref>{{cite web|url=http://www.foothill.edu/psme/daley/tutorials_files/10.%20Error%20Propagation.pdf|date=October 9, 2009|title=Error Propagation tutorial|work=Foothill College | access-date=2012-03-01}}</ref> | <math>\sigma_f \approx \left| f \right| \left| \left( b\sigma_A \right) \right| </math> |- | <math>f = a^{bA}</math> | <math>\sigma_f^2 \approx f^2 (b\ln(a)\sigma_A)^2</math> | <math>\sigma_f \approx \left| f \right| \left| b \ln(a) \sigma_A \right|</math> |- | <math>f = a \sin(bA)</math> | <math>\sigma_f^2 \approx \left[ a b \cos(b A) \sigma_A \right]^2</math> | <math>\sigma_f \approx \left| a b \cos(b A) \sigma_A \right|</math> |- | <math>f = a \cos \left( b A \right)\,</math> | <math>\sigma_f^2 \approx \left[ a b \sin(b A) \sigma_A \right]^2</math> | <math>\sigma_f \approx \left| a b \sin(b A) \sigma_A \right|</math> |- |<math>f = a \tan \left( b A \right)\,</math> |<math>\sigma_f^2 \approx \left[ a b \sec^2(b A) \sigma_A \right]^2</math> |<math>\sigma_f \approx \left| a b \sec^2(b A) \sigma_A \right|</math> |- | <math>f = A^B</math> | <math>\sigma_f^2 \approx f^2 \left[ \left( \frac{B}{A}\sigma_A \right)^2 +\left( \ln(A)\sigma_B \right)^2 + 2 \frac{B \ln(A)}{A} \sigma_{AB} \right]</math> | <math>\sigma_f \approx \left| f \right| \sqrt{ \left( \frac{B}{A}\sigma_A \right)^2 +\left( \ln(A)\sigma_B \right)^2 + 2 \frac{B \ln(A)}{A} \sigma_{AB} } </math> |- | <math>f = \sqrt{aA^2 \pm bB^2}</math> | <math>\sigma_f^2 \approx \left(\frac{A}{f}\right)^2 a^2\sigma_A^2 + \left(\frac{B}{f}\right)^2 b^2\sigma_B^2 \pm 2ab\frac{AB}{f^2}\,\sigma_{AB}</math> | <math>\sigma_f \approx \sqrt{\left(\frac{A}{f}\right)^2 a^2\sigma_A^2 + \left(\frac{B}{f}\right)^2 b^2\sigma_B^2 \pm 2ab\frac{AB}{f^2}\,\sigma_{AB}}</math> |} For uncorrelated variables (<math>\rho_{AB} = 0</math>, <math>\sigma_{AB} = 0</math>) expressions for more complicated functions can be derived by combining simpler functions. For example, repeated multiplication, assuming no correlation, gives <math display="block">f = ABC; \qquad \left(\frac{\sigma_f}{f}\right)^2 \approx \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2+ \left(\frac{\sigma_C}{C}\right)^2.</math> For the case <math>f = AB </math> we also have Goodman's expression<ref name="Goodman1960"/> for the exact variance: for the uncorrelated case it is <math display="block">\operatorname{V}[XY] = \operatorname{E}[X]^2 \operatorname{V}[Y] + \operatorname{E}[Y]^2 \operatorname{V}[X] + \operatorname{E}\left[\left(X - \operatorname{E}(X)\right)^2 \left(Y - \operatorname{E}(Y)\right)^2\right],</math> and therefore we have <math display="block">\sigma_f^2 = A^2\sigma_B^2 + B^2\sigma_A^2 + \sigma_A^2\sigma_B^2.</math> ===Effect of correlation on differences=== If ''A'' and ''B'' are uncorrelated, their difference ''A'' − ''B'' will have more variance than either of them. An increasing positive correlation (<math>\rho_{AB} \to 1</math>) will decrease the variance of the difference, converging to zero variance for perfectly correlated variables with the [[homoscedastic|same variance]]. On the other hand, a negative correlation (<math>\rho_{AB} \to -1</math>) will further increase the variance of the difference, compared to the uncorrelated case. For example, the self-subtraction ''f'' = ''A'' − ''A'' has zero variance <math>\sigma_f^2 = 0</math> only if the variate is perfectly [[autocorrelation|autocorrelated]] (<math>\rho_A = 1</math>). If ''A'' is uncorrelated, <math>\rho_A = 0,</math> then the output variance is twice the input variance, <math>\sigma_f^2 = 2\sigma^2_A.</math> And if ''A'' is perfectly anticorrelated, <math>\rho_A = -1,</math> then the input variance is quadrupled in the output, <math>\sigma_f^2 = 4 \sigma^2_A</math> (notice <math>1 - \rho_A = 2</math> for ''f'' = ''aA'' − ''aA'' in the table above). ==Example calculations== ===Inverse tangent function=== We can calculate the uncertainty propagation for the inverse tangent function as an example of using partial derivatives to propagate error. Define <math display="block">f(x) = \arctan(x),</math> where <math>\Delta_x</math> is the absolute uncertainty on our measurement of {{mvar|x}}. The derivative of {{math|''f''(''x'')}} with respect to {{mvar|x}} is <math display="block">\frac{d f}{d x} = \frac{1}{1+x^2}.</math> Therefore, our propagated uncertainty is <math display="block">\Delta_{f} \approx \frac{\Delta_x}{1+x^2},</math> where <math>\Delta_f</math> is the absolute propagated uncertainty. ===Resistance measurement=== A practical application is an [[experiment]] in which one measures [[current (electricity)|current]], {{mvar|I}}, and [[voltage]], {{mvar|V}}, on a [[resistor]] in order to determine the [[electrical resistance|resistance]], {{mvar|R}}, using [[Ohm's law]], {{math|1=''R'' = ''V'' / ''I''}}. Given the measured variables with uncertainties, {{math|''I'' ± ''σ''<sub>''I''</sub>}} and {{math|''V'' ± ''σ''<sub>''V''</sub>}}, and neglecting their possible correlation, the uncertainty in the computed quantity, {{math|''σ''<sub>''R''</sub>}}, is: <math display="block">\sigma_R \approx \sqrt{ \sigma_V^2 \left(\frac{1}{I}\right)^2 + \sigma_I^2 \left(\frac{-V}{I^2}\right)^2 } = R\sqrt{ \left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2 }.</math> ==See also== {{div col}} * [[Accuracy and precision]] * [[Automatic differentiation]] * [[Bienaymé's identity]] * [[Delta method]] * [[Dilution of precision (navigation)]] * [[Errors and residuals in statistics]] * [[Experimental uncertainty analysis]] * [[Interval finite element]] * [[Measurement uncertainty]] * [[Numerical stability]] * [[Probability bounds analysis]] * [[Uncertainty quantification]] * [[Random-fuzzy variable]] * {{slink|Variance#Propagation}} {{div col end}} == References == {{reflist|30em}} ==Further reading== * {{Citation |last1=Bevington |first1=Philip R. |last2=Robinson |first2=D. Keith |year=2002 |title=Data Reduction and Error Analysis for the Physical Sciences |edition=3rd |publisher=McGraw-Hill |isbn=978-0-07-119926-1 }} * {{citation | first1=Paolo | last1=Fornasini | title=The uncertainty in physical measurements: an introduction to data analysis in the physics laboratory | publisher=Springer | year=2008 | isbn=978-0-387-78649-0 | page=161 | url=https://books.google.com/books?id=PBJgvPgf2NkC&pg=PA161 }} * {{Citation |last=Meyer |first=Stuart L. |year=1975 |title=Data Analysis for Scientists and Engineers |publisher=Wiley |isbn=978-0-471-59995-1 }} * {{Citation |last=Peralta |first=M. |date=2012 |title=Propagation Of Errors: How To Mathematically Predict Measurement Errors |publisher=CreateSpace }} * {{Citation |last=Rouaud |first=M. |date=2013 |url=http://www.incertitudes.fr/book.pdf |title=Probability, Statistics and Estimation: Propagation of Uncertainties in Experimental Measurement |edition=short }} * {{Citation |last=Taylor |first=J. R. |date=1997 |title=An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements |edition=2nd |publisher=University Science Books }} * {{Cite journal |last1=Wang |first1=C. M. |last2=Iyer |first2=Hari K. |date=2005-09-07 |title=On higher-order corrections for propagating uncertainties |journal=Metrologia |volume=42 |issue=5 |pages=406–410 |doi=10.1088/0026-1394/42/5/011 |bibcode=2005Metro..42..406W |s2cid=122841691 |issn=0026-1394}} ==External links== *[http://www.av8n.com/physics/uncertainty.htm A detailed discussion of measurements and the propagation of uncertainty] explaining the benefits of using error propagation formulas and Monte Carlo simulations instead of simple significance arithmetic *[https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 GUM], Guide to the Expression of Uncertainty in Measurement *[http://srl.informatik.uni-freiburg.de/papers/arrasTR98.pdf EPFL An Introduction to Error Propagation], Derivation, Meaning and Examples of Cy = Fx Cx Fx' *[https://pythonhosted.org/uncertainties/ uncertainties package], a program/library for transparently performing calculations with uncertainties (and error correlations). *[https://pypi.org/project/soerp/ soerp package], a Python program/library for transparently performing *second-order* calculations with uncertainties (and error correlations). *{{cite tech report| author=Joint Committee for Guides in Metrology| title=JCGM 102: Evaluation of Measurement Data - Supplement 2 to the "Guide to the Expression of Uncertainty in Measurement" - Extension to Any Number of Output Quantities| year=2011| institution=JCGM| url=http://www.bipm.org/utils/common/documents/jcgm/JCGM_102_2011_E.pdf| access-date=13 February 2013}} *[https://uncertaintycalculator.com/ Uncertainty Calculator] Propagate uncertainty for any expression {{Authority control}} [[Category:Algebra of random variables]] [[Category:Numerical analysis]] [[Category:Statistical approximations]] [[Category:Statistical deviation and dispersion]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite tech report
(
edit
)
Template:Cite web
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:For
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Nowrap
(
edit
)
Template:Page needed
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)
Template:Webarchive
(
edit
)