Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pseudometric space
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Generalization of metric spaces in mathematics}} In [[mathematics]], a '''pseudometric space''' is a [[generalization]] of a [[metric space]] in which the distance between two distinct points can be zero. Pseudometric spaces were introduced by [[Đuro Kurepa]]<ref>{{Cite journal|last=Kurepa|first=Đuro|date=1934|title=Tableaux ramifiés d'ensembles, espaces pseudodistaciés|journal=[[C. R. Acad. Sci. Paris]]|volume=198 (1934)|pages=1563–1565}}</ref><ref>{{Cite book|last=Collatz|first=Lothar|title=Functional Analysis and Numerical Mathematics|publisher=[[Academic Press]]|year=1966|location=New York, San Francisco, London|pages=51|language=English}}</ref> in 1934. In the same way as every [[normed space]] is a [[metric space]], every [[seminormed space]] is a pseudometric space. Because of this analogy, the term [[semimetric space]] (which has a different meaning in [[topology]]) is sometimes used as a synonym, especially in [[functional analysis]]. When a topology is generated using a family of pseudometrics, the space is called a [[gauge space]]. ==Definition== A pseudometric space <math>(X,d)</math> is a set <math>X</math> together with a non-negative [[real-valued function]] <math>d : X \times X \longrightarrow \R_{\geq 0},</math> called a '''{{visible anchor|pseudometric}}''', such that for every <math>x, y, z \in X,</math> #<math>d(x,x) = 0.</math> #''Symmetry'': <math>d(x,y) = d(y,x)</math> #''[[Subadditivity]]''/''[[Triangle inequality]]'': <math>d(x,z) \leq d(x,y) + d(y,z)</math> Unlike a metric space, points in a pseudometric space need not be [[Identity of indiscernibles|distinguishable]]; that is, one may have <math>d(x, y) = 0</math> for distinct values <math>x \neq y.</math> ==Examples== Any metric space is a pseudometric space. Pseudometrics arise naturally in [[functional analysis]]. Consider the space <math>\mathcal{F}(X)</math> of real-valued functions <math>f : X \to \R</math> together with a special point <math>x_0 \in X.</math> This point then induces a pseudometric on the space of functions, given by <math display=block>d(f,g) = \left|f(x_0) - g(x_0)\right|</math> for <math>f, g \in \mathcal{F}(X)</math> A [[seminorm]] <math>p</math> induces the pseudometric <math>d(x, y) = p(x - y)</math>. This is a [[convex function]] of an [[affine function]] of <math>x</math> (in particular, a [[translation (geometry)|translation]]), and therefore convex in <math>x</math>. (Likewise for <math>y</math>.) Conversely, a homogeneous, translation-invariant pseudometric induces a seminorm. Pseudometrics also arise in the theory of [[hyperbolic manifold|hyperbolic]] [[complex manifold]]s: see [[Kobayashi metric]]. Every [[measure space]] <math>(\Omega,\mathcal{A},\mu)</math> can be viewed as a complete pseudometric space by defining <math display=block>d(A,B) := \mu(A \vartriangle B)</math> for all <math>A, B \in \mathcal{A},</math> where the triangle denotes [[symmetric difference]]. If <math>f : X_1 \to X_2</math> is a function and ''d''<sub>2</sub> is a pseudometric on ''X''<sub>2</sub>, then <math>d_1(x, y) := d_2(f(x), f(y))</math> gives a pseudometric on ''X''<sub>1</sub>. If ''d''<sub>2</sub> is a metric and ''f'' is [[Injective function|injective]], then ''d''<sub>1</sub> is a metric. ==Topology== The '''{{visible anchor|pseudometric topology}}''' is the [[Topology (structure)|topology]] generated by the [[open balls]] <math display=block>B_r(p) = \{x \in X : d(p, x) < r\},</math> which form a [[Basis (topology)|basis]] for the topology.<ref>{{planetmath reference|urlname=PseudometricTopology|title=Pseudometric topology}}</ref> A topological space is said to be a '''{{visible anchor|pseudometrizable space}}'''<ref>Willard, p. 23</ref> if the space can be given a pseudometric such that the pseudometric topology coincides with the given topology on the space. The difference between pseudometrics and metrics is entirely topological. That is, a pseudometric is a metric if and only if the topology it generates is [[T0 space|T<sub>0</sub>]] (that is, distinct points are [[topologically distinguishable]]). The definitions of [[Cauchy sequence]]s and [[Completion (metric space)|metric completion]] for metric spaces carry over to pseudometric spaces unchanged.<ref>{{Cite web|last=Cain|first=George|date=Summer 2000|title=Chapter 7: Complete pseudometric spaces|url=http://people.math.gatech.edu/~cain/summer00/ch7.pdf|url-status=live|archive-url=https://archive.today/20201007070509/http://people.math.gatech.edu/~cain/summer00/ch7.pdf|archive-date=7 October 2020|access-date=7 October 2020}}</ref> ==Metric identification== The vanishing of the pseudometric induces an [[equivalence relation]], called the '''metric identification''', that converts the pseudometric space into a full-fledged [[metric space]]. This is done by defining <math>x\sim y</math> if <math>d(x,y)=0</math>. Let <math>X^* = X/{\sim}</math> be the [[Quotient space (topology)|quotient space]] of <math>X</math> by this equivalence relation and define <math display=block>\begin{align} d^*:(X/\sim)&\times (X/\sim) \longrightarrow \R_{\geq 0} \\ d^*([x],[y])&=d(x,y) \end{align}</math> This is well defined because for any <math>x' \in [x]</math> we have that <math>d(x, x') = 0</math> and so <math>d(x', y) \leq d(x, x') + d(x, y) = d(x, y)</math> and vice versa. Then <math>d^*</math> is a metric on <math>X^*</math> and <math>(X^*,d^*)</math> is a well-defined metric space, called the '''metric space induced by the pseudometric space''' <math>(X, d)</math>.<ref>{{cite book|last=Howes|first=Norman R.|title=Modern Analysis and Topology|year=1995|publisher=Springer|location=New York, NY|isbn=0-387-97986-7|url=https://www.springer.com/mathematics/analysis/book/978-0-387-97986-1|access-date=10 September 2012|page=27|quote=Let <math>(X,d)</math> be a pseudo-metric space and define an equivalence relation <math>\sim</math> in <math>X</math> by <math>x \sim y</math> if <math>d(x,y)=0</math>. Let <math>Y</math> be the quotient space <math>X/\sim</math> and <math>p : X\to Y</math> the canonical projection that maps each point of <math>X</math> onto the equivalence class that contains it. Define the metric <math>\rho</math> in <math>Y</math> by <math>\rho(a,b) = d(p^{-1}(a),p^{-1}(b))</math> for each pair <math>a,b \in Y</math>. It is easily shown that <math>\rho</math> is indeed a metric and <math>\rho</math> defines the quotient topology on <math>Y</math>.}}</ref><ref>{{cite book|title=A comprehensive course in analysis|last=Simon|first=Barry|publisher=American Mathematical Society|year=2015|isbn=978-1470410995|location=Providence, Rhode Island}}</ref> The metric identification preserves the induced topologies. That is, a subset <math>A \subseteq X</math> is open (or closed) in <math>(X, d)</math> if and only if <math>\pi(A) = [A]</math> is open (or closed) in <math>\left(X^*, d^*\right)</math> and <math>A</math> is [[Saturated set|saturated]]. The topological identification is the [[Kolmogorov quotient]]. An example of this construction is the [[Complete metric space#Completion|completion of a metric space]] by its [[Cauchy sequences]]. ==See also== * {{annotated link|Generalised metric}} * {{annotated link|Metric signature}} * {{annotated link|Metric space}} * {{annotated link|Metrizable topological vector space}} ==Notes== {{reflist}} ==References== * {{cite book | title=General Topology I: Basic Concepts and Constructions Dimension Theory | last=Arkhangel'skii | first=A.V. |author1link = Alexander Arhangelskii|author2=Pontryagin, L.S. |author2link = Lev Pontryagin| year=1990 | isbn=3-540-18178-4 | publisher=[[Springer Science+Business Media|Springer]] | series=Encyclopaedia of Mathematical Sciences}} * {{cite book | title=Counterexamples in Topology | last=Steen | first=Lynn Arthur |author1link = Lynn Arthur Steen|author2link = J. Arthur Seebach Jr.|author2=Seebach, Arthur | year=1995 | orig-year=1970 | isbn=0-486-68735-X | publisher=[[Dover Publications]] | edition=new }} * {{Citation | last=Willard | first=Stephen | title=General Topology | orig-year=1970 | publisher=Addison-Wesley | edition=[[Dover Publications|Dover]] reprint of 1970 | year=2004}} * {{PlanetMath attribution|id=6273|title=Pseudometric space}} * {{planetmath reference|urlname=ExampleOfPseudometricSpace|title=Example of pseudometric space}} {{Metric spaces}} {{DEFAULTSORT:Pseudometric Space}} [[Category:Metric geometry]] [[Category:Properties of topological spaces]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Metric spaces
(
edit
)
Template:PlanetMath attribution
(
edit
)
Template:Planetmath reference
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Visible anchor
(
edit
)